精英家教网 > 高中数学 > 题目详情
对于任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,试求实数x的取值范围.
分析:由题意可得|x-1|+|x-2|小于或等于
|a+b|+|a-b|
|a|
 的最小值,而
|a+b|+|a-b|
|a|
 的最小值等于2,故x的范围即为不等式|x-1|+|x-2|≤2的解,根据数轴上的
1
2
5
2
 对应点到1和2对应点的距离之和等于2,可得不等式的解集.
解答:解:由题知,|x-1|+|x-2|≤
|a+b|+|a-b|
|a|
 恒成立,故|x-1|+|x-2|小于或等于
|a+b|+|a-b|
|a|
 的最小值.
∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,当且仅当 (a+b)(a-b)≥0 时取等号,
|a+b|+|a-b|
|a|
 的最小值等于2,∴x的范围即为不等式|x-1|+|x-2|≤2的解.
由于|x-1|+|x-2|表示数轴上的x对应点到1和2对应点的距离之和,又由于数轴上的
1
2
5
2
 对应点到
1和2对应点的距离之和等于2,故不等式的解集为[
1
2
5
2
],
故答案为[
1
2
5
2
].
点评:本题考查绝对值的意义,绝对值不等式的解法,判断|x-1|+|x-2|表示数轴上的x对应点到1和2对应点的距离之和,是解题
的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于任意实数a,b,c,d,命题:
(1)若a>b,c>0,则ac>bc
(2)若a>b,则ac2>bc2
(3)若ac2<bc2,则a<b
(4)若a>b,则
1
a
1
b

(5)若a>b>0,c>d>0,则ac>bd
其中正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数a,b,c,d;命题:
(1)若a>b,c>0,则ac>bc
(2)若ac2<bc2,则a<b
(3)若a>b,则ac2>bc2
(4)若a>b,则
1
a
1
b

(5)若a>b>0,c>d>0,则ac>bd
其中正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在R上为减函数,则对于任意实数a,下列式子恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(不等式选讲选做题)对于任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-
1
2
|+|x-
3
2
|)
恒成立,试求实数x的取值范围是
 

查看答案和解析>>

同步练习册答案