精英家教网 > 高中数学 > 题目详情
△ABC的内角A,B,C的对边分别为a,b,c,若A=60°,b+c=4,S△ABC=
3
则a=(  )
分析:根据三角形的面积公式,可以求出bc=4,利用b+c=4,可得b2+c2,利用余弦定理,我们可以求得结论.
解答:解:∵A=60°,S△ABC=
3

∴S△ABC=
1
2
bcsin60°
=
3

∴bc=4
∵b+c=4,
∴b2+c2=(b+c)2-2bc=8
∴a2=b2+c2-2bccosA
∴a2=8-2×4×cos60°=4
∴a=2
故选B.
点评:解决三角形问题,正、余弦定理是我们常用的定理,利用余弦定理,通常需知道三角形的两边及其夹角或已知三边.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=
14

(Ⅰ)求△ABC的周长;
(Ⅱ)求cos(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积S=
3
4
(c2-a2-b2)

(Ⅰ)求C;
(Ⅱ)若a+b=2,且c=
3
,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)设函数f(x)=sinx+cos(x+
π
6
),x∈R
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
3
2
,且a=
3
2
b
,求角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A、B、C的对边分别为a、b、c,三边长a、b、c成等比数列,且a2=c2+ac-bc,则
asinB
b
的值为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知△ABC的内角A、B、C所对的边分别是a、b、c,若3a2+2ab+3b2-3c2=0,则角C的大小是
π-arccos
1
3
π-arccos
1
3

查看答案和解析>>

同步练习册答案