精英家教网 > 高中数学 > 题目详情
11.从数字1,2,3,4,5,6中任取2个求出乘积,则所得结果是3的倍数的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

分析 基本事件总数n=${C}_{6}^{2}=15$,所得结果是3的倍数包含的基本事件个数m=${C}_{2}^{2}+{C}_{2}^{1}{C}_{4}^{1}=9$,由此能求出所得结果是3的倍数的概率.

解答 解:从数字1,2,3,4,5,6中任取2个求出乘积,
基本事件总数n=${C}_{6}^{2}=15$,
所得结果是3的倍数包含的基本事件个数m=${C}_{2}^{2}+{C}_{2}^{1}{C}_{4}^{1}=9$,
∴所得结果是3的倍数的概率是p=$\frac{m}{n}$=$\frac{9}{15}$=$\frac{3}{5}$.
故选:B.

点评 本题考查概率的求法及应用,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinx(cosx-sinx)+$\frac{1}{2}$
(Ⅰ)求f(x)的最小正周期;
(II)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\frac{1-x}{1+x}$的递减区间是(-∞,-1),(-1,+∞),函数y=$\sqrt{\frac{1-x}{1+x}}$的递减区间是(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.执行如图所示的程序框图,若输入x为12,则输出y的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个几何体的三视图如图所示(单位:m),则该几何体的体积为15m3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知复数z=1-2i,则复数$\frac{1}{z}$的实部为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax-$\frac{a}{x}$-2lnx(a>0)
(Ⅰ)当a=2时,求函数f(x)零点的个数;
(Ⅱ)讨论f(x)的单调性
(Ⅲ)设函数g(x)=$\frac{2e}{x}$,若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,则“数列$\left\{{\frac{S_n}{n}}\right\}$为等差数列”是“数列{an}为等差数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案