精英家教网 > 高中数学 > 题目详情
4.已知平面直角坐标系xoy中,点P(1,0),曲线C的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=sinφ\end{array}\right.$(φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,倾斜角为α的直线l的极坐标方程为ρsin(α-θ)=sinα.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)若曲线C与直线l交于M,N两点,且$|{\frac{1}{{|{PM}|}}-\frac{1}{{|{PN}|}}}|=\frac{1}{3}$,求α的值.

分析 (1)消去曲线C中的参数,可得普通方程,利用ρsinθ=y,ρcosθ=x,可得直线l的直角坐标方程.
(2)利用参数方程的几何意义,求解.

解答 解:(1)曲线C的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=sinφ\end{array}\right.$(φ为参数).cos2φ+sin2φ=1,可得:$(\frac{x}{2})^{2}+{y}^{2}=1$
故得曲线C的普通方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.
直线l的极坐标方程为ρsin(α-θ)=sinα
?ρsinαcosθ-ρsinθcosα=sinα
?(x-1)sinα=ycosα
?y=x•tanα-tanα.
故得直线l的直角坐标方程为y=x•tanα-tanα.
(2)由题意,可得直线l的参数方程$\left\{\begin{array}{l}{x=1+t•tanα}\\{y=t•tanα}\end{array}\right.$带入曲线C的普通方程可得:(3sin2α+1)+2cosα•t-3=0,
可得:${t}_{1}+{t}_{2}=-\frac{2cosα}{3si{n}^{2}α+1}$,${t}_{1}•{t}_{2}=-\frac{3}{3si{n}^{2}α+1}$.
由$|{\frac{1}{{|{PM}|}}-\frac{1}{{|{PN}|}}}|=\frac{1}{3}$,
可得:|$\frac{|PM|-|PN|}{|PM|•|PN|}$|=|$\frac{{t}_{1}+{t}_{2}}{{t}_{1}{t}_{2}}$|=$\frac{1}{3}$,
即$\frac{|-6cosα|}{3si{n}^{2}α+1}$=|$\frac{-3}{3si{n}^{2}α+1}$|,
解得:|cosα|=$\frac{1}{2}$,
∴α=$\frac{π}{3}$或$α=\frac{2π}{3}$.

点评 本题考查了参数方程,极坐标方程与普通方程的互换以及参数方程的几何意义的运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知直线l经过直线2x+y+5=0与x-2y=0的交点,圆C1:x2+y2-2x-2y-4=0与圆C2:x2+y2+6x+2y-6=0相较于A、B两点.
(1)若点P(5,0)到直线l的距离为4,求l的直线方程;
(2)若直线l与直线AB垂直,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知正方体ABCD-A1B1C1D1中,点E是上底面A1C1的中心,化简下列向量表达式,并在图中标出化简结果的向量.
(1)$\overrightarrow{AB}$+$\overrightarrow{BC}$-$\overrightarrow{{C}_{1}C}$;
(2)$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{DA}$-$\overrightarrow{{A}_{1}A}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设α,β为两个不同的平面,l为直线,则下列结论正确的是(  )
A.l∥α,α⊥β⇒l⊥αB.l⊥α,α⊥β⇒l∥αC.l∥α,α∥β⇒l∥βD.l⊥α,α∥β⇒l⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a,b,c分别是△ABC的内角A,B,C的对边,BC边上的高为$\frac{a}{2}$,则$\frac{c}{b}$的最大值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知椭圆C经过点(1,0),(0,2),则椭圆C的标准方程为(  )
A.x2+$\frac{y^2}{2}$=1B.$\frac{x^2}{2}$+y2=1C.x2+$\frac{y^2}{4}$=1D.$\frac{x^2}{4}$+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影O为AC的中点,A1O=2,AB⊥BC,AB=BC=$\sqrt{2}$点P在线段A1B上,且cos∠PAO=$\frac{2}{3}$,则直线AP与平面A1AC所成角的正弦值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,正方体ABCD-A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是(  )
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知关于x的函数f(x)=x2-2ax+2.
(1)当a≤2时,求f(x)在[$\frac{1}{3}$,3]上的最小值g(a);
(2)如果函数f(x)同时满足:
        ①函数在整个定义域上是单调增函数或单调减函数;
        ②在函数的定义域内存在区间[p,q],使得函数在区间[p,q]上的值域为[p2,q2].则我们称函数f(x)是该定义域上的“闭函数”.
(i)若关于x的函数y=$\sqrt{{x}^{2}-1}$+t(x≥1)是“闭函数”,求实数t的取值范围;
(ii)判断(1)中g(a)是否为“闭函数”?若是,求出p,q的值或关系式;若不是,请说明理由.

查看答案和解析>>

同步练习册答案