精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)讨论函数的单调性;

2)对任意的恒成立,请求出的取值范围.

【答案】(1)见解析;(2).

【解析】

1)分两种情况讨论的符号后可得的单调性.

2)原不等式等价于,令,其导数为,求得,虚设其在上的零点后,可证明恒成立,从而得到上为增函数,求得的值域后可得的取值范围.

解:(1

,则,所以函数上递增;

,方程的判别式为

所以方程有两根分别为

所以当时,

时,

所以函数上递减;在上递增.

2)不等式,对任意的恒成立,

对任意的恒成立.

,则

,则

易知上单调递增,

因为,且的图象在上不间断,

所以存在唯一的,使得,即,则

时,单调递减;当时,单调递增.

处取得最小值,

且最小值为

所以,即上单调递增,所以.

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校兴趣小组在如图所示的矩形区域内举行机器人拦截挑战赛,在处按方向释放机器人甲,同时在处按某方向释放机器人乙,设机器人乙在处成功拦截机器人甲.若点在矩形区域内(包含边界),则挑战成功,否则挑战失败.已知米,中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记的夹角为

1)若足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到);

2)如何设计矩形区域的宽的长度,才能确保无论的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域内成功拦截机器人甲?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教师为了分析所任教班级某次考试的成绩,将全班同学的成绩作成统计表和频率分布直方图如下:

分组

频数

频率

[50,60)

3

0.06

[60,70)

m

0.10

[70,80)

13

n

[80,90)

p

q

[90,100]

9

0.18

总计

t

1

(1)求表中tq及图中a的值;

(2)该教师从这次考试成绩低于70分的学生中随机抽取3人进行谈话,设X表示所抽取学生中成绩低于60分的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据报道,全国很多省市将英语考试作为高考改革的重点,一时间英语考试该如何改革引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就是否取消英语听力问题进行了问卷调查统计,结果如下表:

态度

调查人群

应该取消

应该保留

无所谓

在校学生

2100

120

社会人士

600

(1)已知在全体样本中随机抽取人,抽到持应该保留态度的人的概率为,现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,问应在持无所谓态度的人中抽取多少人?

(2)在持应该保留态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处切线的斜率为,求此切线方程

(2)若有两个极值点,求的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

(1)求证:平面

(2)求证:平面平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把定义在上,且满足(其中常数满足)的函数叫做似周期函数.

1)若某个似周期函数满足且图象关于直线对称,求证:函数是偶函数;

2)当时,某个似周期函数在时的解析式为,求函数的解析式;

3)对于(2)中的函数,若对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若对任意的也是数列中的项,则称数列数列,已知数列满足:对任意的,均有,其中表示数列的前项和.

1)求证:数列为等差数列;

2)若数列数列,求的所有可能值;

3)若对任意的也是数列中的项,求证:数列数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.

1)若烘焙店一天加工16个这种蛋糕,,求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;

2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:

日需求量

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

①若烘焙店一天加工16个这种蛋糕,表示当天的利润(单位:元),求的分布列与数学期望及方差;

②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由.

查看答案和解析>>

同步练习册答案