精英家教网 > 高中数学 > 题目详情

【题目】如图在直三棱柱ABC A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.

(1)求证:DE∥平面AA1C1C;

(2) 求证:BC1⊥AB1

(3)设AC=BC=CC1 =1,求锐二面角A- B1C- A1的余弦值。

【答案】(1)见解析;(2)见解析;(3)

【解析】

1)由DEB1AC中位,线易知DEAC,从而DE∥平面AA1C1C;(2)先证AC⊥平面BCC1B1,得BC1AC,又因为BC1B1C,所以BC1⊥平面B1AC,所以BC1AB1;(3)先求出点A1到平面B1AC的距离,再求出点A1到交线B1C的距离,转化为余弦值即可.

证明:(1)由题意知,EB1C的中点,

DAB1的中点,因此DEAC.

又因为DE平面AA1C1CAC平面AA1C1C

所以DE∥平面AA1C1C.

(2)因为三棱柱ABC A1B1C1是直三棱柱,

所以CC1⊥平面ABC.

因为AC平面ABC,所以ACCC1.

又因为ACBCCC1平面BCC1B1

BC平面BCC1B1BC∩CC1C

所以AC⊥平面BCC1B1.

又因为BC1平面BCC1B1,所以BC1AC.

因为BCCC1,所以矩形BCC1B1是正方形,因此BC1B1C.

因为ACB1C平面B1ACAC∩B1CC,所以BC1⊥平面B1AC.

又因为AB1平面B1AC,所以BC1AB1.

3)因为A1C1ACAC平面B1ACA1C1平面B1AC

所以A1C1∥平面B1AC

所以点A1到平面B1AC与点C1到平面B1AC的距离相等,且

又因为在A1B1C中,A1B1=A1C=B1C=

所以点A1到直线B1C的距离

所以锐二面角A- B1C- A1的正弦值

所以锐二面角A- B1C- A1的正弦值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,直线图象的一条对称轴.

1)求的单调递减区间;

2)已知函数的图象是由图象上的各点的横坐标伸长到原来的4倍,然后再向左平移个单位长度得到,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的多面体中,EF⊥平面AEBAEEBADEFEFBCBC=2AD=4EF=3AE=BE=2GBC的中点.

(Ⅰ)求证:AB∥平面DEG

(Ⅱ)求二面角C-DF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是公差不为零的等差数列,满足,且成等比数列.

(1)求数列的通项公式;

(2)设数列满足,求数列的前项和.

【答案】(1);(2)

【解析】试题分析:1)设等差数列 的公差为,由a3=7,且成等比数列.可得,解之得即可得出数列的通项公式;

2)由(1)得,则,由裂项相消法可求数列的前项和.

试题解析:(1)设数列的公差为,且由题意得

,解得

所以数列的通项公式.

(2)由(1)得

.

型】解答
束】
18

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数f(x)的最小正周期和单调递减区间;

(2)求函数f(x)的最大值及取得最大值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取张进行统计,将结果分成5组,分别是,制成如图所示的频率分布直方图(假设消费金额均在元的区间内).

1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自元区间的概率;

2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:

方案一:全场商品打8.5折;

方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|(x﹣a),a为实数.

(1)若函数f(x)为奇函数,求实数a的值;

(2)若函数f(x)在[0,2]为增函数,求实数a的取值范围;

(3)是否存在实数a(a<0),使得f(x)在闭区间上的最大值为2,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品均需要两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为(  )

原料限额

(吨)

3

2

10

(吨)

1

2

6

A. 10万元B. 12万元C. 13万元D. 14万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,求的定义域;

2)若上为减函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案