精英家教网 > 高中数学 > 题目详情

抛物线y2=-2x的准线方程为


  1. A.
    x=-1
  2. B.
    x=1
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:先根据抛物线方程求得p,进而根据抛物线的性质,求得准线方程.
解答:∵抛物线y2=-2x,
∴抛物线的焦点在x轴上,开口向左,且p=1,
∴准线方程是x=
故选D.
点评:本题的考点是抛物线的简单性质,主要考查根据抛物线的标准方程求准线方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为(  )
A、(0,0)
B、(
1
2
,1)
C、(1,
2
)
D、(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=2x的焦点为F,以P(
9
2
,0)
为圆心,PF长为半径作一圆,与抛物线在x轴上方交于M,N,则|MF|+|NF|的值为(  )
A、8
B、18
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

15、设直线y=x-3与抛物线y2=2x的交于A,B两点,则AB中点的坐标为
(4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若点A的坐标为(3,2),F为抛物线y2=2x的焦点,点P在该抛物线上移动,为使得PA+PF取得最小值,则P点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若点A的坐标为(3,2),F为抛物线y2=2x的焦点,点P是抛物线上的一动点,则|PA|+|PF|取得最小值时点P的坐标是(  )

查看答案和解析>>

同步练习册答案