精英家教网 > 高中数学 > 题目详情

【题目】设椭圆C的两个焦点是,且椭圆C与圆有公共点.

1)求实数a的取值范围;

2)若椭圆C上的点到焦点的最短距离为,求椭圆C的方程;

3)对(2)中的椭圆C,直线lC交于不同的两点MN,若线段MN的垂直平分线恒过点,求实数m的取值范围.

【答案】1;(2;(3

【解析】

(1)根据椭圆C与圆有公共点,可转换为联立方程有解即可.

(2)设椭圆上的点,再求出到焦点的距离,分析取最短距离时的情况,再列式求解椭圆中基本量的关系即可.

(3)联立直线与椭圆的方程,求出MN的垂直平分线,代入即可得的关系,再根据判别式与的关系列出不等式进行求解即可.

(1)由已知,,所以方程 有实数解,从而.

,所以,a的取值范围是.

(2)设椭圆上的点到一个焦点的距离为,

因为 ,,

因为.所以当,

,故椭圆方程为

(3)

因为直线与椭圆交于不同两点,所以,.

, ,故线段的中点.
又线段的垂直平分线横过点,所以,.

.,,解得,

,

故实数m的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为为椭圆上不与左右顶点重合的任意一点,分别为的内心、重心,当轴时,椭圆的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】7本不同的书:

1)全部分给6个人,每人至少一本,有多少种不同的分法?

2)全部分给5个人,每人至少一本,有多少种不同的分法?.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图, 平面,四边形为等腰梯形, .

(1)求证:平面平面

(2)已知中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击.某杂志社近9年来的纸质广告收入如表所示:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

时间代号t

1

2

3

4

5

6

7

8

9

广告收入y(千万元)

2

2.2

2.5

2.8

3

2.5

2.3

2

1.8

根据这9年的数据,对ty作线性相关性检验,求得样本相关系数的绝对值为0.243;根据后5年的数据,对ty作线性相关性检验,求得样本相关系数的绝对值为0.984

(Ⅰ)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,

方案一:选取这9年数据进行预测;方案二:选取后5年数据进行预测.

从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?

附:

相关性检验的临界值表:

n-2

小概率

0.05

0.01

3

0.878

0.959

7

0.666

0.798

(Ⅱ)某购物网站同时销售某本畅销书籍的纸质版本和电子书,某班级有五名同学在该网站购买了这本书,其中三人只购买了电子书,另两人只购买了纸质书,从这五人中任取两人,求两人都购买了电子书的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足2an=2+Sn

1)求证:数列{an}是等比数列;

2)设bn=log2a2n+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某城市有一条从正西方AO通过市中心O后向东北OB的公路,现要修一条地铁L,在OAOB上各设一站AB,地铁在AB部分为直线段,现要求市中心OAB的距离为,设地铁在AB部分的总长度为

按下列要求建立关系式:

,将y表示成的函数;

mn表示y

AB两站分别设在公路上离中心O多远处,才能使AB最短?并求出最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为等差数列{an}的前n项和,a42S618

1)求an

2)设Tn|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

同步练习册答案