精英家教网 > 高中数学 > 题目详情
已知椭圆=1内有一点P(1,-1),F为椭圆的右焦点,在椭圆上有一点M,使|MP|+2|MF|取得最小值,则点M的坐标为

A.(,-1)                                                  B.(±,-1)

C.(1,-)                                                      D.(-,-1)

解析:c==1,即F(1,0).设M在右准线上的射影为N,则.∴|MN|=2|MF|,故|MP|+2|MF|=|MP|+|MN|.

显然当MPN共线时,|MP|+|MN|最小.由+=1,得x.

x>0,∴M的坐标为(,-1).

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
5
=1
内有一点A(1,1),F1、F2分别是椭圆的左、右焦点,点P是椭圆上一点.
(1)求|PA|+|PF1|的最大值、最小值及对应的点P坐标;
(2)求|PA|+
3
2
|PF2|
的最小值及对应的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
4
=1
内有一点P(2,1),过点P作直线交椭圆于A、B两点.
(1)若弦AB恰好被点P平分,求直线AB的方程;
(2)当原点O到直线AB的距离取最大值时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
3
=1
内有一点P(1,-1),F是椭圆的右焦点.
(1)求该椭圆的离心率.
(2)在椭圆上求一点M,使得|MP|+2|MF|的值最小,并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•钟祥市模拟)如图,已知椭圆
x2
2
+y2=1
内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两点,若|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2


(1)证明:AC⊥BD;
(2)若M点恰好为椭圆中心O
(i)四边形ABCD是否存在内切圆?若存在,求其内切圆方程;若不存在,请说明理由.
(ii)求弦AB长的最小值.

查看答案和解析>>

同步练习册答案