精英家教网 > 高中数学 > 题目详情
(2013•湖南)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图1),若光线QR经过△ABC的重心,则AP等于(  )
分析:建立坐标系,设点P的坐标,可得P关于直线BC的对称点P1的坐标,和P关于y轴的对称点P2的坐标,由P1,Q,R,P2四点共线可得直线的方程,由于过△ABC的重心,代入可得关于a的方程,解之可得P的坐标,进而可得AP的值.
解答:解:建立如图所示的坐标系:
可得B(4,0),C(0,4),故直线BC的方程为x+y=4,
△ABC的重心为(
0+0+4
3
0+4+0
3
),设P(a,0),其中0<a<4,
则点P关于直线BC的对称点P1(x,y),满足
a+x
2
+
y+0
2
=4
y-0
x-a
•(-1)=-1

解得
x=4
y=4-a
,即P1(4,4-a),易得P关于y轴的对称点P2(-a,0),
由光的反射原理可知P1,Q,R,P2四点共线,
直线QR的斜率为k=
4-a-0
4-(-a)
=
4-a
4+a
,故直线QR的方程为y=
4-a
4+a
(x+a),
由于直线QR过△ABC的重心(
4
3
4
3
),代入化简可得3a2-4a=0,
解得a=
4
3
,或a=0(舍去),故P(
4
3
,0),故AP=
4
3

故选D
点评:本题考查直线与点的对称问题,涉及直线方程的求解以及光的反射原理的应用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=
3
b,则角A等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)在平面直角坐标系xOy中,若直线l:
x=t
y=t-a
,(t为参数)过椭圆C:
x=3cosθ
y=2sinθ
(θ为参数)的右顶点,则常数a的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(-10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.
(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);
(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)在平面直角坐标系xOy中,若直线l1
x=2s+1
y=s
(s为参数)和直线l2
x=at
y=2t-1
(t为参数)平行,则常数a的值为
4
4

查看答案和解析>>

同步练习册答案