精英家教网 > 高中数学 > 题目详情

【题目】如图,已知圆经过椭圆的左右焦点,与椭圆在第一象限的交点为,且 三点共线.

(1)求椭圆的方程;

(2)设与直线为原点)平行的直线交椭圆两点,当的面积取取最大值时,求直线的方程.

【答案】(1) ;(2) .

【解析】试题分析:(1)由题意把焦点坐标代入圆的方程求出 ,再由条件得为圆的直径,且,根据勾股定理求出,根据椭圆的定义和依次求出的值,代入椭圆方程即可;

(2)由(1)求出的坐标,根据向量共线的条件求出直线的斜率,设直线的方程和的坐标,联立直线方程和椭圆方程消去,利用韦达定理和弦长公式求出,由点到直线的距离公式求出点到直线的距离,代入三角形的面积公式求出,化简后求最值即可.

试题解析:(1)∵ 三点共线,∴为圆的直径

.由,得,∴,∵ .

椭圆的方程为. (2)1知,点的坐标为,∴直线的斜率为故设直线的方程为方程代入消去得:

=,∵到直线的距离

当且仅当,即时等号成立此时直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正方体的棱长为2EFG分别为的中点,则(

A.直线与直线垂直

B.直线与平面不平行

C.平面截正方体所得的截面面积为

D.C与点G到平面的距离相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,若函数的两个极值点恰为函数的两个零点,且的范围是,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于曲线,给出下列三个结论:

曲线关于原点对称,但不关于轴、轴对称;

曲线恰好经过4个整点(即横、纵坐标均为整数的点);

曲线上任意一点到原点的距离都不大于.

其中,正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中不正确的是(  )

A.为直线,为平面,且;则的充要条件

B.设随机变量,若,则

C.若不等式()恒成立,则的取值范围是

D.已知直线经过点,则的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,得到甲、乙两位学生成绩的茎叶图.

1)现要从中选派一人参加数学竞赛,对预赛成绩的平均值和方差进行分析,你认为哪位学生的成绩更稳定?请说明理由;

2)若将频率视为概率,求乙同学在一次数学竞赛中成绩高于84分的概率;

3)求在甲同学的8次预赛成绩中,从不小于80分的成绩中随机抽取2个成绩,列出所有结果,并求抽出的2个成绩均大于85分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】雷达图(Radar Chart),又可称为戴布拉图、蜘蛛网图(Spider Chart),原先是财务分析报表的一种,现可用于对研究对象的多维分析.图为甲、乙两人在五个方面的评价值的雷达图,则下列说法不正确的是(

A.甲、乙两人在次要能力方面的表现基本相同

B.甲在沟通、服务、销售三个方面的表现优于乙

C.在培训与销售两个方面上,甲的综合表现优于乙

D.甲在这五个方面的综合表现优于乙

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20203月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如下表:

购票人数

1~50

51~100

100以上

门票价格

13/

11/

9/

两个旅游团队计划游览该景点.若分别购票,则共需支付门票费1290元;若合并成个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为(

A.20B.30C.35D.40

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列和等比数列中, 项和.

(1)若 ,求实数的值;

(2)是否存在正整数,使得数列的所有项都在数列中?若存在,求出所有的,若不存在,说明理由;

(3)是否存在正实数,使得数列中至少有三项在数列中,但中的项不都在数列中?若存在,求出一个可能的的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案