精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知A、B、C为的三个内角且向量共线。

(Ⅰ)求角C的大小;

(Ⅱ)设角的对边分别是,且满足,试判断的形状.

 

【答案】

(1) (2)△为等边三角形

【解析】

试题分析:(Ⅰ)∵共线   

∴  

        …………………………3分

                 …………………………4分

∴C=  ……………………………6分

(Ⅱ)方法1:由已知 (1)

根据余弦定理可得: (2)           ……………………8分

(1)、(2)联立解得:   ………………………………………10分

又. C=,所以△为等边三角形, ………………12分

方法2:

由正弦定理得:

          ……………………8分

……………………………10分

, ∴在△中 ∠ 

又. C=, 所以 △为等边三角形,    ……………………………12分

方法3:由(Ⅰ)知C=,又由题设得:

中根据射影定理得:

             ……………………8分

                    ……………………………10分

又. C=, 所以 △为等边三角形, ……………………………12分

考点:考查了解三角形运用。

点评:解决该试题的关键是对于向量共线以及两角和差的三角关系式的变形求解,同时能结合三角形的两个定理来确定形状,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源:安徽省合肥一中、六中、一六八中学2010-2011学年高二下学期期末联考数学(理 题型:解答题

(本题满分12分)已知△的三个内角所对的边分别为.,且.(1)求的大小;(2)若.求.

查看答案和解析>>

科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题

(本题满分12分)

已知椭圆的长轴长是短轴长的倍,是它的左,右焦点.

(1)若,且,求的坐标;

(2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线是切点),且使,求动点的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省高二上学期10月月考理科数学卷 题型:解答题

(本题满分12分)已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量是共线向量

(1)求椭圆的离心率

(2)设Q是椭圆上任意一点,分别是左右焦点,求的取值范围

 

查看答案和解析>>

同步练习册答案