精英家教网 > 高中数学 > 题目详情

【题目】某公司为获得较好的收益,每年要投入一定资金用于广告促销,经调查,每年投入广告费(百万元),可增加销售额约为(百万元)(

(1)若该公司当年的广告费控制在4百万元之内,则应该设入多少广告费,才能使该公司获得的收益最大?

(2)现该公司准备共投入6百万元,分别用于广告促销售和技术改造,经预测,每设入技术改造费(百万元),可增加销售额约为(百万元),请设计一种资金分配方案,使该公司由此获得最大收益.(注:收益销售额成本)

【答案】(1) 该公司应该投入3百万元用于广告宣传,所获得的收益最大;(2) 该公司投资3百万元用于广告促销,3百万元用于技术改造,可以获得最大有益.

【解析】试题分析:(1)设投入t(t百万元)的广告费后增加的收益为f(t)根据收益为销售额与投放的差可建立收益模型为:f(t)=,再由二次函数法求得最大值.

(2)根据题意,若用技术改造的资金为x(百万元),则用于广告促销的资金为(百万元),则收益模型为: ,因为是高次函数,所以用导数法研究其单调性和极值,最终求得最大值.

(Ⅰ)广告费,由此产生的收益

时, 最大,也即该公司应该投入3百万元用于广告宣传,所获得的收益最大.

(Ⅱ)设6百万元投资中有百万用于技术改造, 百万用于广告宣传,则公司由此产生的收益为

求导数, ,当时, 最大,

所以该公司投资3百万元用于广告促销,3百万元用于技术改造,可以获得最大有益.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,对角线AC与相邻两边所成的角为α,β,则cos2α+cos2β=1.类比到空间中一个正确命题是:在长方体ABCD﹣A1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi , yi)(i=1,2,…,n),用最小二乘法建立的回归方程为 =0.85x﹣85.71,则下列结论中不正确的是(
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,我市某居民小区拟在边长为1百米的正方形地块ABCD上划出一个三角形地块APQ种植草坪,两个三角形地块PAB与QAD种植花卉,一个三角形地块CPQ设计成水景喷泉,四周铺设小路供居民平时休闲散步,点P在边BC上,点Q在边CD上,记∠PAB=a.
(1)当∠PAQ= 时,求花卉种植面积S关于a的函数表达式,并求S的最小值;
(2)考虑到小区道路的整体规划,要求PB+DQ=PQ,请探究∠PAQ是否为定值,若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(2x+3)+x2
(1)讨论f(x)的单调性;
(2)求f(x)在区间[﹣ ]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求函数的单调区间;

)当时,证明:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A=[a﹣3,a],函数 (﹣2≤x≤5)的单调减区间为集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,我国南海某处的一个圆形海域上有四个小岛,小岛B与小岛A、小岛C相距都为5n mile,与小岛D相距为 n mile.小岛A对小岛B与D的视角为钝角,且
(Ⅰ)求小岛A与小岛D之间的距离和四个小岛所形成的四边形的面积;
(Ⅱ)记小岛D对小岛B与C的视角为α,小岛B对小岛C与D的视角为β,求sin(2α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C.

(1)求CE的长;
(2)求证:A1C⊥平面BED;
(3)求A1B与平面BDE夹角的正弦值.

查看答案和解析>>

同步练习册答案