精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: (a>b>0),长轴长为4,离心率为.

(Ⅰ)椭圆的求椭圆的标准方程;

(Ⅱ)设过定点M(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角(O为坐标原点),求直线l的斜率k的取值范围.

【答案】(Ⅰ) +y2=1(Ⅱ)k∈(-2,- )∪(,2).

【解析】试题分析:(1)由题意可得,解得即可;
(2)直线的方程为,设.与椭圆方程联立,由,解得 的取值范围.可得根与系数的关系.若 为锐角,则,把根与系数的关系代入又得到的取值范围,取其交集即可.

试题解析:(Ⅰ)依题意, ,解得

故椭圆C的方程为+y2=1.

(Ⅱ)如图,依题意,直线l的斜率必存在,

设直线l的方程为y=kx+2,A(x1,y1),B(x2,y2),

联立方程组,消去y整理得(1+4k2)x2+16kx+12=0,

由韦达定理,x1+x2,x1x2

∴y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=+4=

因为直线l与椭圆C相交,则Δ>0,

即256k2-48(1+4k2)>0,

解得k<-或k>

当∠AOB为锐角时,向量,则x1x2+y1y2>0,

>0,解得-2<k<2,

故当∠AOB为锐角时,k∈(-2,- )(2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知ab分别是△ABC内角AB的对边,且bsin2Aacos Asin B,函数f(x)sin Acos2xsin2sin 2xx.

(1)A

(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中e是自然对数的底数,kR)

(1)讨论函数的单调性;

(2)当函数有两个零点时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,不能证明APBC的条件是(  )

A. APPBAPPC

B. APPBBCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为自然对数的底数).

(Ⅰ)讨论的单调性;

(Ⅱ)若有两个零点的取值范围;

2在(1)的条件下,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 ,记

(1)求函数f(x)的最小正周期;

(2)试用“五点法”画出函数f(x)在区间上的简图,并指出该函数的图象可由y=sin x(x∈R)的图象经过怎样的平移和伸缩变换得到;

(3)若函数g(x)=f(x)+m 的最小值为2,试求出函数g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三文科班学生参加了数学与地理水平测试,学校从测试合格的学生中随机抽取100人的成绩进行统计分析.抽取的100人的数学与地理的水平测试成绩如下表:

成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42人.

(1)若在该样本中,数学成绩优秀率为30%,求a,b的值;

(2)若样本中,求在地理成绩及格的学生中,数学成绩优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a为实数,函数f(x)x2|xa|1x∈R.

(1)讨论f(x)的奇偶性;

(2)f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥SABCD中的底面是菱形,∠BAD=60°,SD⊥底面ABCDSDAB=2,EF分别为SBCD的中点.

(Ⅰ)求证:EF∥平面SAD

(Ⅱ)点PSB上一点,若SB⊥平面APC,试确定点P的位置.

查看答案和解析>>

同步练习册答案