精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)处的切线方程;

(2)当时,函数有两个极值点,求的取值范围;

(3)若在点处的切线与轴平行,且函数时,其图象上每一点处切线的倾斜角均为锐角,求的取值范围.

【答案】(1) y=0.

(2).

(3).

【解析】分析:(1)先利用导数求切线的斜率,再写出切线的方程.(2)先求导得,转化为的图像的交点有两个,再利用数形结合分析两个函数的图像得到的取值范围.(3)先转化为当时,恒成立,即

,再构造函数求其最小值,令其最小值大于零,得a的取值范围.

详解:(1)由题得所以切线方程为y=0.

(2) 当时,

所以有两个极值点就是方程有两个解,

的图像的交点有两个.

,当时,单调递增;当时,单调递减.有极大值又因为时,;当时,.

的图像的交点有0个;

的图像的交点有1个;

的图象的交点有2个;

综上.

(3)函数在点处的切线与轴平行,

所以,因为

所以

时,其图像的每一点处的切线的倾斜角均为锐角,

即当时,恒成立,即

,∴

,因为,所以,∴

单调递增,即单调递增,

,当时,

所以单调递增;

成立

,因为单调递增,所以

所以存在

时,单调递减,所以有不恒成立;

所以实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某汽车公司对最近6个月内的市场占有率进行了统计,结果如表;

月份代码

1

2

3

4

5

6

市场占有率

11

13

16

15

20

21

(1)可用线性回归模型拟合之间的关系吗?如果能,请求出关于的线性回归方程,如果不能,请说明理由;

(2)公司决定再采购两款车扩大市场, 两款车各100辆的资料如表:

车型

报废年限(年)

合计

成本

1

2

3

4

10

30

40

20

100

1000元/辆

15

40

35

10

100

800元/辆

平均每辆车每年可为公司带来收入元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命部是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的平均数作为决策依据,应选择采购哪款车型?

参考数据: .

参考公式:相关系数

回归直线方程为,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知点,直线l与圆C:(x一1)2+(y一2)2=4相交于AB两点,且OAOB

(1)若直线OA的方程为y=一3x,求直线OB被圆C截得的弦长;

(2)若直线l过点(0,2),求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆上有一动点到椭圆的两焦点的距离之和等于到直线的最大距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)若过点的直线与椭圆交于不同两点为坐标原点)且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )

A. 6 B. 8 C. 12 D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)请作出该函数在长度为一个周期的闭区间的大致图象;

(2)试判断该函数的奇偶性,并运用函数的奇偶性定义说明理由;

(3)求该函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面,四边形是正方形,.

(Ⅰ)证明:平面平面

(Ⅱ)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C方程:+=1(a>b>0),M(x0 , y0)是椭圆C上任意一点,F(c,0)是椭圆的右焦点.
(1)若椭圆的离心率为e,证明|MF|=a﹣ex0
(2)已知不过焦点F的直线l与圆x2+y2=b2相切于点Q,并与椭圆C交于A,B两点,且A,B两点都在y轴的右侧,若a=2,求△ABF的周长.

查看答案和解析>>

同步练习册答案