设等差数列{an}的公差为d,d>0,数列{bn}是公比为q等比数列,且b1=a1>0.
(1)若a3=b3,a7=b5,探究使得an=bm成立时n与m的关系;
(2)若a2=b2,求证:当n>2时,an<bn.
分析:(1)记a
1=b
1=a,由已知条件得
,解得a=2d,q=
,由此可以推出a
n=b
m.
(2)由题意知
q====1+>1,所以,a
n-b
n=a+(n-1)d-aq
n-1,由此能够推导出当n>2时,a
n<b
n.
解答:解:(1)设a
1=b
1=a,(由已知得
,a=2d,q=
,由题设条件知,a
n=b
m.
则a+(n-1)d=aq
m-1,即
2d+(n-1)d=2d()m-1,所以
n+1=()m+1.
(2)因为d>0,a>0,所以
q====1+>1,(11分)
n>2时,a
n-b
n=a+(n-1)d-aq
n-1=a(1-q
n-1)-(n-1)d
=a(1-q)(1+q+q
2++q
n-2)+(n-1)d<a(1-q)(n-1)+(n-1)d
=((n-1)[a(1-q)+d]=(n-1)(a
2-b
2)=0
所以,当n>2时,a
n<b
n.
点评:本题考查数列的性质和应用,解题时要认真审题.