精英家教网 > 高中数学 > 题目详情
等比数列{an}中,a1=2,a4=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若a3,a5分别为等差数列{bn}的第4项和第16项,试求数列{bn}的前项和Sn
【答案】分析:(Ⅰ)由首项和第四项代入等比数列通项公式求出公比,然后直接写出通项公式;
(Ⅱ)求出a2和a5,即得到等差数列{bn}的第4项和第16项,设出公差后列方程组可求等差数列{bn}的首项和公差,则前n项和可求.
解答:解:(Ⅰ)设{an}的公比为q,
由已知得16=2q3,解得q=2.
又a1=2,所以
(Ⅱ)由(I)得a2=8,a5=32,则b4=8,b16=32.
设{bn}的公差为d,则有,解得
则数列{bn}的前项和
点评:本题考查了等差数列的通项公式和前n项和公式,考查了方程思想,考查了学生的计算能力,此题为中低档提.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,a2=18,a4=8,则公比q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an}的前n项和为Sn,证明:Sn<n-ln(n+1);
(Ⅲ)设bn=an
9
10
n,证明:对任意的正整数n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a3=2,a7=32,则a5=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,an=2×3n-1,则由此数列的奇数项所组成的新数列的前n项和为
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知对n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于(  )

查看答案和解析>>

同步练习册答案