精英家教网 > 高中数学 > 题目详情
20.若z=(1+i)3,则$\overline{z}$=-2-2i.

分析 直接展开立方和公式化简,再由共轭复数的概念得答案.

解答 解:∵z=(1+i)3=1+3i-3-i=-2+2i,
∴$\overline{z}=-2-2i$.
故答案为:-2-2i.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c且满足∠B=2∠A.
(1)若b=$\sqrt{3}$a,求cosC的值;
(2)若b2=2ac,求cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若集合A={x|x+a>0},B={x|bx<1,b≠0},且A∩B={x|($\frac{1}{3}$)${\;}^{{x}^{2}-3x+1}$>35-2x},则a,b的值分别为-2,$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设全集U={x|x≤20且x是质数}.A∩(∁UB)={3,5}.(∁UA)∩B={7,19},(∁UA)∩(∁UB)={2,17},求集合A,B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知x、y满足条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,z=ax+y的最大值为4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.把R看成全集,用区间形式写出下列各集合的补集:
(1)(2,+∞);(2)(-∞,1);(3)(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数求导f(x)=-$\frac{{x}^{2}}{x+lnx}$(x>0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z的实部、虚部范围都是(-1,1),若z=(x-1)+yi(x,y∈R),用A表示事件“y≤x”,用B表示事件“y≥x2”,则P(B|A)=(  )
A.$\frac{1}{24}$B.$\frac{1}{21}$C.$\frac{1}{12}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算:lg25+$\frac{2}{3}$log38×lg3-$\sqrt{3}$×$\root{3}{\frac{3}{2}}$×12${\;}^{\frac{1}{6}}$.

查看答案和解析>>

同步练习册答案