精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x+3
3x
,数列{an}满足:a1=1,a n+1=f(
1
an
),
(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1求Tn
(3)设bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+b3+…+bn,若Sn
k-2004
2
对一切n∈N*成立,求最小的正整数m的值.
分析:(1)根据题意列出递推公式,再由等差数列的定义求通项公式an
(2)根据式子的特点进行变形,然后由(1)知数列为等差数列求Tn
(3)把an代入bn整理后再裂项,然后求数列{bn}的前n和sn,再用放缩法和不等式恒成立问题,求m的值.
解答:解:(1)∵a n+1=f(
1
an
)=
2+3an
3
=an+
2
3

∴an+1-an=
2
3

∴数列{an}是以
2
3
为公差,首项a1=1的等差数列
∴an=
2
3
n+
1
3

(2)Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1
=-
4
3
(a2+a4+…+a2n
=-
4
3
×
n×(
5
3
+
4n
3
+
1
3
)
2
=-
4
9
(2n2+3n)
(3)当n≥2时,bn=
1
an-1an
=
1
(
2
3
n-
1
3
)(
2
3
n-
1
3
)
=
9
2
1
2n-1
-
1
2n+1

当n=1时,上式同样成立
∴sn=b1+b2+…+bn=
9
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]=
9
2
(1-
1
2n+1
)=
9
2
-
9
4n+2
9
2
恒成立
∵Sn
k-2004
2
,即
9
2
(1-
1
2n+1
)<
k-2004
2

解得  m≥2011,
∴m最小=2011
点评:本题的前两小题考查了等差数列的定义求和问题,最后一小题有一定的难度,用到了裂项相消法求和,处理不等式时用到了放缩法,使得不等式恒成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案