精英家教网 > 高中数学 > 题目详情
分别是椭圆:的左、右焦点,过倾斜角为的直线与该椭圆相交于P,两点,且.则该椭圆的离心率为(   )
A.B.C.D.
B
直线斜率为1,设直线的方程为,其中.
,则两点坐标满足方程组
化简得,则

因为,所以.
,故
所以椭圆的离心率,选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的左、右焦点分别为,其上顶点为已知是边长为的正三角形.

(1)求椭圆的方程;
(2)过点任作一动直线交椭圆两点,记.若在线段上取一点,使得,当直线运动时,点在某一定直线上运动,求出该定直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与椭圆相交于两点,点是线段上的一点,且点在直线上.
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)过点,且椭圆的离心率为
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.求直线是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,过点且离心率为.

(1)求椭圆的方程;
(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=kx+1,当k变化时,此直线被椭圆截得的最大弦长等于(  )
A.4B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦.当直线斜率为0时,

(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆,上除顶点外的一点,是椭圆的左焦点,若 则点到该椭圆左焦点的距离为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为(   )
A.2
B.3
C.6
D.8

查看答案和解析>>

同步练习册答案