精英家教网 > 高中数学 > 题目详情
16.如图,摩天轮的半径为40m,摩天轮的圆心O距地面为50m,且摩天轮做匀速转动,每3min转-圈,摩天轮上的点P的起始位置在最低点处,若在时刻t(单位:min)时点P距离地面的高度f(t)=Asin(ωt+φ)+h(A>0,ω>0,|φ|≤$\frac{π}{2}$),求2014min时,点P距离地面的高度.

分析 由实际问题求出三角函数中的参数A,h,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,求出f(t),将t用2014代替求出20146min时点P距离地面的高度.

解答 解:由题意可知:A=40,h=50,T=3,所以ω=$\frac{2π}{3}$,即f(t)=40sin($\frac{2π}{3}$t-φ)+50,
又因为f(0)=10,故φ=-$\frac{π}{2}$,得f(t)=40sin($\frac{2π}{3}$t-$\frac{π}{2}$)+50,
所以f(2014)=40sin($\frac{2π}{3}$×2014-$\frac{π}{2}$)+50=70,
即点P距离地面的高度为70m.

点评 本题考查通过实际问题得到三角函数的性质,由性质求三角函数的解析式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(1,2),则向量$\overrightarrow{m}$与向量$\overrightarrow{n}$不共线的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{11}{12}$D.$\frac{1}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式-3x2<0的解集为(  )
A.B.RC.(-∞,0)∪(0,+∞)D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的函数f(x)对任意0<x2<x1都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1.且函数y=f(x)的图象关于原点对称,若f(2)=2,则不等式f(x)-x>0的解集是(  )
A.(-2,0)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-∞,-2)∪(0,2)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点A(1,2)B(2,4)C(-2,5),则$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若一个圆锥的轴截面的顶角为120°,母线长是2cm,求圆锥的底面半径$\sqrt{3}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.与四面体的四个顶点距离都相等的平面共有7个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{{\sqrt{3}}}{4}$(x∈R)
(1)求f(x)的单调递减区间;
(2)求f(x)在区间[-$\frac{π}{4},\;\frac{π}{4}$]上的最大值和最小值并写出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)═ax+a-1+xlnx.
(1)求f(x)的单调区间;
(2)已知函数有极小值-e-2.若k∈Z,且f(x)-k(x-1)>0对任意x∈(1,+∞)恒成立,求k的最大值.

查看答案和解析>>

同步练习册答案