精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(1)若函数在(,1)上单调递减,在(1,+∞)上单调递增,求实数a的值;
(2)是否存在正整数a,使得在()上既不是单调递增函数也不是单调递减函数?若存在,试求出a的值,若不存在,请说明理由.

(1)a=-.(2)a=2.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

证明函数  是增函数,并求函数的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知定义域为的函数是奇函数.
(Ⅰ)求的值;  (Ⅱ)判断函数的单调性;
(Ⅲ)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设为实常数).
(1)当时,证明:不是奇函数;
(2)设是奇函数,求的值;
(3)当是奇函数时,证明对任何实数、c都有成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数均为实数,且满足,对于任意实数都有,并且当时有成立。
(1)求的值;
(2)证明:
(3)当∈[-2,2]且取最小值时,函数为实数)是单调函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数为定义域上单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数上的正函数,区间叫做等域区间.
(1)已知上的正函数,求的等域区间;
(2)试探究是否存在实数,使得函数上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知函数是奇函数,且.
(1) 求的表达式;(2) 设; zxxk
,求S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 
(1)若上递增,求的取值范围;
(2)求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数y=f(x)= (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<.试求函数f(x)的解析式

查看答案和解析>>

同步练习册答案