精英家教网 > 高中数学 > 题目详情
(2013•宁德模拟)已知函数,f(x)=
3
cos(
π
2
-2ωx)+2sin2ωx(ω>0)的最小正周期为π.
(I )求函数y=f(x)的最值及其单调递增区间;
(II )函数f(x)的图象可以由函数y=2sin2x(x∈R)的图象经过怎样的变换得到?
分析:(I)利用降次升角公式,及和差角公式(辅助角公式),可将函数y=f(x)的解析式化为正弦型函数的形式,结合函数y=f(x)的最小正周期为π,可得ω的值,进而结合正弦函数的图象和性质,可得答案.
(II)根据函数图象的变换法则,结合变换前后函数的解析式,可分析出函数变换的方法.
解答:解:(I)∵f(x)=
3
cos(
π
2
-2ωx)+2sin2ωx=
3
sin2ωx+1-cos2ωx=2sin(2ωx-
π
6
)+1
又∵ω>0,f(x)的最小正周期为π
故ω=1
故f(x)=2sin(2x-
π
6
)+1
∵A=2,B=1
故函数y=f(x)的最大值为3,最小值为-1
由2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2

kπ-
π
6
≤x≤kπ+
π
3
,k∈Z
故函数y=f(x)的单调递增区间为[kπ-
π
6
,kπ+
π
3
],(k∈Z)
(II)将函数y=2sin2x(x∈R)的图象上的所有点向右平移
π
12
个单位长度
得到函数y=2sin2(x-
π
12
)=2sin(2x-
π
6
)(x∈R)的图象;
再将函数y=2sin2(x-
π
12
)=2sin(2x-
π
6
)(x∈R)的图象上的所有点向上平移1个单位长度
得到函数f(x)=2sin(2x-
π
6
)+1的图象.
点评:本题考查的知识点是两角差的正弦函数,二倍角公式,正弦型函数的单调性,周期性,函数图象的变换,是函数图象和性质的综合应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宁德模拟)集合U={1,2,3,4,5},集合A={2,4},则?UA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)已知在数列{an}中,a1=1,an+1=2an(n∈N+),数列{bn}是公差为3的等差数列,且b2=a3
(I)求数列{an}、{bn}的通项公式;
(II)求数列{an-bn}的前n项和sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)已知M={-1,0,1},N={x丨x2+x=0},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)已知向量
a
=(-2,1),
b
=(x+1,-2),若
a
b
,则|
a
+
b
|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)某社区以“周末你最喜爱的一个活动”为题,对该社区2000个居民进行随机抽样调查(每位被调查居民必须而且只能从运动、上网、看书、聚会、其它等五项中选择一个项目)若抽取的样本容量为50,相应的条形统计图如图所示.据此可估计该社区中最喜欢运动的居民人数为(  )

查看答案和解析>>

同步练习册答案