精英家教网 > 高中数学 > 题目详情
(2013•惠州模拟)已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π),且函数y=f(2x+
π
4
)的图象关于直线x=
π
6
对称.
(1)求φ的值;
(2)若f(a-
3
)=
2
4
,求sin2a的值.
分析:(1)利用两角和的正弦公式合并可得f(2x+
π
4
)=sin(2x+
π
4
+φ),再用三角函数对称轴方程的公式建立关于φ的等式,结合题意可解出φ=
11π
12

(2)将a-
3
代入(1)中求出的表达式,化简整理可得sin(a+
π
4
)=
2
4
,结合两角和的正弦公式可得sina+cosa=
1
2
,再将此式平方,并结合二倍角公式和同角三角函数基本关系,即可算出sin2a的值.
解答:解:(1)∵f(x)=sinxcosφ+cosxsinφ=sin(x+φ),…(2分)
∴函数f(x)的最小正周期为2π.…(3分)
∵函数y=f(2x+
π
4
)=sin[(2x+
π
4
)+φ]=sin(2x+
π
4
+φ),
且函数y=sin(2x+
π
4
+φ)图象关于直线x=
π
6
对称,…(5分)
∴x=
π
6
满足2x+
π
4
+φ=
π
2
+kπ,k∈Z
代入得
π
3
+
π
4
+φ=
π
2
+2kπ,
结合0<φ<π取k=1,得φ=
11π
12
…(7分)
(2)∵f(a-
3
)=sin(a-
3
+
11π
12
)=sin(a+
π
4
),…(9分)
∴sin(a+
π
4
)=
2
2
(sina+cosa)=
2
4
,可得sina+cosa=
1
2
,…(11分)
两边平方,得(sina+cosa)2=
1
4
,即sin2a+2sinacosa+cos2a=
1
4

∵sin2a=2sinacosa
∴1+sin2a=
1
4
,解之可得sin2a=-
3
4
…(14分)
点评:本题给出三角函数图象关于直线x=
π
6
对称,求φ的值并通过函数解析式求另一个角的正弦值.着重考查了三角函数的图象与性质、三角恒等变换等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州模拟)设正项等比数列{an}的前n项和为Sn,已知a3=4,a4a5a6=212
(Ⅰ)求首项a1和公比q的值;
(Ⅱ)若Sn=210-1,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目.
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽取的2所学校均为小学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)不等式组
x≤2
y≥0
y≤x-1
表示的平面区域的面积是
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为(  )

查看答案和解析>>

同步练习册答案