分析 (1)由已知得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列.
(2)利用对立事件概率公式能求出去执行任务的同学中有男有女的概率.
解答 解:(1)由已知得X的可能取值为0,1,2,3,
P(X=0)=$\frac{{C}_{3}^{3}}{{C}_{8}^{3}}$=$\frac{1}{56}$,
P(X=1)=$\frac{{C}_{5}^{1}{C}_{3}^{2}}{{C}_{8}^{3}}$=$\frac{15}{56}$,
P(X=2)=$\frac{{C}_{5}^{2}{C}_{3}^{1}}{{C}_{8}^{3}}$=$\frac{30}{56}$,
P(X=3)=$\frac{{C}_{5}^{3}}{{C}_{8}^{3}}$=$\frac{10}{56}$,
∴X的分布列为:
X | 0 | 1 | 2 | 3 |
P | $\frac{1}{56}$ | $\frac{15}{56}$ | $\frac{30}{56}$ | $\frac{10}{56}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列的求法,是中档题,解题时要注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(-∞,0]∪[\frac{1}{4},+∞)$ | B. | $(-∞,-\frac{1}{4}]∪[0,+∞)$ | C. | $[-\frac{1}{4},0]$ | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(-\frac{1}{6},\frac{1}{2})$ | B. | $(\frac{1}{2},\frac{1}{6})$ | C. | $(\frac{1}{2},-\frac{1}{6})$ | D. | $(\frac{1}{6},-\frac{1}{2})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com