【题目】已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an .
(1)求数列{an},{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Sn;
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的取值范围.
【答案】
(1)解:设等比数列{an}的公比为q,∵a1=2,a2=4(a3﹣a4),
∴a2=4a2(q﹣q2),化为:4q2﹣4q+1=0,解得q= .
∴an= =22﹣n.
∴bn=3﹣2log2an=3﹣2(2﹣n)=2n﹣1
(2)解:cn= = = .
∴数列{cn}的前n项和Sn= [2+322+5×23+…+(2n﹣1)2n],
∴2Sn= [22+323+…+(2n﹣3)2n+(2n﹣1)2n+1],
∴﹣Sn= = ,
可得:Sn=
(3)解:不等式2λ2﹣kλ+2>a2nbn,即2λ2﹣kλ+2>22﹣2n(2n﹣1),
令dn=22﹣2n(2n﹣1),则dn+1﹣dn= ﹣ = = <0,
因此dn+1<dn,即数列{dn}单调递减,因此n=1时dn取得最大值d1=1.
∵对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立,
∴2λ2﹣kλ+2>1,∵λ>0.
∴k<2 ,∵2 ≥2 =2 ,当且仅当λ= 时取等号.
∴ .
即k的取值范围是
【解析】(1)设等比数列{an}的公比为q,根据a1=2,a2=4(a3﹣a4),可得a2=4a2(q﹣q2),化简解得q.可得an . 利用对数的运算性质可得bn . (2)cn= = = .利用错位相减法与等比数列的求和公式即可得出.(3)不等式2λ2﹣kλ+2>a2nbn , 即2λ2﹣kλ+2>22﹣2n(2n﹣1),令dn=22﹣2n(2n﹣1),通过作差可得:dn+1<dn , 即数列{dn}单调递减,因此n=1时dn取得最大值d1=1.根据对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立,可得2λ2﹣kλ+2>1,根据λ>0.可得k<2 ,再利用基本不等式的性质即可得出.
科目:高中数学 来源: 题型:
【题目】某保险公司研究一款畅销保险产品的保费与销量之间的关系,根据历史经验,若每份保单的保费在元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下组与的对应数据:
(1)试据此求出关于的线性回归方程;
(2)若把回归方程当做与的线性关系,试计算每份保单的保费定为多少元此产品的保费总收入最大,并求出该最大值;
参考公式:
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,A(2,4),B(﹣1,2),C,D为动点,
(1)若C(3,1),求平行四边形ABCD的两条对角线的长度
(2)若C(a,b),且 ,求 取得最小值时a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件: ①(a+b+c)(a+b﹣c)=3ab
②sinA=2cosBsinC
③b=acosC,c=acosB
④
有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.
请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.
(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;
(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12lnx恒成立,求a的取值范围;
(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),
记h(a)=M(a)-m(a),求h(a)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax3+3x2﹣x+1,a∈R.
(1)当a=﹣3时,求证:f(x)=在R上是减函数;
(2)如果对x∈R不等式f′(x)≤4x恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的导函数的图像与直线平行,且在处取得极小值.设.
(1)若曲线上的点到点的距离的最小值为,求的值;
(2)如何取值时,函数存在零点,并求出零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在以下关于向量的命题中,不正确的是( )
A.若向量 ,向量 (xy≠0),则
B.若四边形ABCD为菱形,则
C.点G是△ABC的重心,则
D.△ABC中, 和 的夹角等于A
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com