精英家教网 > 高中数学 > 题目详情
7.抛物线y2=8x的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足$∠AFB=\frac{2π}{3}$,过线段AB的中点M作直线l的垂线,垂足为N,则$\frac{|MN|}{|AB|}$的最大值,是(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

分析 设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2-ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.

解答 解:设|AF|=a,|BF|=b,连接AF、BF,
由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,
在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.
由余弦定理得,
|AB|2=a2+b2-2abcos120°=a2+b2+ab,
配方得,|AB|2=(a+b)2-ab,
又∵ab≤($\frac{a+b}{2}$)2
∴(a+b)2-ab≥(a+b)2-$\frac{1}{4}$(a+b)2
=$\frac{3}{4}$(a+b)2
得到|AB|≥$\frac{\sqrt{3}}{2}$(a+b).
∴$\frac{|MN|}{|AB|}$≤$\frac{1}{2}$$\frac{\frac{1}{2}(a+b)}{\frac{\sqrt{3}}{2}(a+b)}$=$\frac{\sqrt{3}}{3}$,
即$\frac{|MN|}{|AB|}$的最大值为$\frac{\sqrt{3}}{3}$.
故选B.

点评 本题在抛物线中,利用定义和余弦定理求$\frac{|MN|}{|AB|}$的最大值,着重考查抛物线的定义和简单几何性质、基本不等式求最值和余弦定理的应用等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知点A(-2,1),B(4,-5).若$\overrightarrow{AM}$=$\frac{1}{2}$$\overrightarrow{AB}$,则向量$\overrightarrow{AM}$的坐标是(3,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的偶函数f(x)在x≥0时,f(x)=ex+$\sqrt{x}$,若f(a)<f(a-1),则a的取值范围是
(  )
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设双曲线的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,其左,右焦点分别为F1,F2,若双曲线右支上一点P满足∠F1PF2=$\frac{π}{3}$,${S}_{△P{F}_{1}{F}_{2}}$=$3\sqrt{3}{a^2}$,则该双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC中,角A,B,C所对边的边长分别为a,b,c,若$\frac{cosA}{cosB}$=$\frac{a}{b}$,则△ABC一定是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sinx+$\sqrt{3}$cosx.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2},(x≤1)}\\{x+1,(x>1)}\end{array}}\right.$,则f(f(-2))=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题
①f(x1+x2)=f(x1)•f(x2
②f(x1•x2)=f(x1)+f(x2
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$
④$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$
⑤曲线g(x)=x2与曲线f(x)=2x有三个公共点.
其中正确的命题序号是①③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.曲线y=sinx+ex在点(0,1)处的切线方程是y=2x+1.

查看答案和解析>>

同步练习册答案