A. | $\frac{{\sqrt{3}}}{4}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
分析 设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2-ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.
解答 解:设|AF|=a,|BF|=b,连接AF、BF,
由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,
在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.
由余弦定理得,
|AB|2=a2+b2-2abcos120°=a2+b2+ab,
配方得,|AB|2=(a+b)2-ab,
又∵ab≤($\frac{a+b}{2}$)2,
∴(a+b)2-ab≥(a+b)2-$\frac{1}{4}$(a+b)2
=$\frac{3}{4}$(a+b)2
得到|AB|≥$\frac{\sqrt{3}}{2}$(a+b).
∴$\frac{|MN|}{|AB|}$≤$\frac{1}{2}$$\frac{\frac{1}{2}(a+b)}{\frac{\sqrt{3}}{2}(a+b)}$=$\frac{\sqrt{3}}{3}$,
即$\frac{|MN|}{|AB|}$的最大值为$\frac{\sqrt{3}}{3}$.
故选B.
点评 本题在抛物线中,利用定义和余弦定理求$\frac{|MN|}{|AB|}$的最大值,着重考查抛物线的定义和简单几何性质、基本不等式求最值和余弦定理的应用等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1) | B. | (-∞,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 等腰三角形 | B. | 直角三角形 | C. | 等腰直角三角形 | D. | 等边三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com