精英家教网 > 高中数学 > 题目详情
18.函数f(x)=log2(1+x)(x>0)的反函数f-1(x)=y=2x-1(x>0).

分析 根据f(x)=y=log2(1+x)(x>0),求出值域f(x)>0.用x把y表示出来,把x与y互换即可得出.

解答 解:f(x)=y=log2(1+x)
∵x>0,
∴y>0,
由y=log2(1+x),
可得:x=2y-1
∴y=2x-1(x>0)
故答案为:y=2x-1(x>0)

点评 本题考查了反函数的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列叙述正确的是(  )
A.第一或第二象限的角都可作为三角形的内角
B.钝角比第三象限的角小
C.第四象限的角一定是负角
D.始边相同而终边不同的角一定不相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)的周期为2,当x∈[0,2]时,f(x)=(x-1)2,如果g(x)=f(x)-log5|x-1|,则函数的所有零点之和为(  )
A.8B.6C.4D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}的首项a1=1,前n项和为Sn,满足关系3Sn-5Sn-1=3(n≥2)
(1)求数列{an}的通项公式;
(2)设函数$f(x)=\frac{2x+3}{3x}$,作数列{bn},使b1=1,${b_n}=f(\frac{1}{{{b_{n-1}}}})$.(n≥2)求bn的通项公式
(3)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.了研究某种细菌在特定环境下随时间变化的繁殖情况,得如下实验数据:
天数t(天)34567
繁殖个数y(千个)2.5344.56
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,预测t=8时,细菌繁殖个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2+1,g(x)=f(f(x))-2λf(x),若函数g(x)在区间[-2,-1]为增函数,则λ的取值范围为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=(2k-1)x+1在R上单调递减,则k的取值范围是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线C:y2=2px(p>0)上一点(5,m)到焦点的距离为6,P,Q分别为抛物线C与圆M:(x-6)2+y2=1上的动点,当|PQ|取得最小值时,向量$\overrightarrow{PQ}$在x轴正方向上的投影为(  )
A.2-$\frac{{\sqrt{5}}}{5}$B.2$\sqrt{5}$-1C.1-$\frac{{\sqrt{21}}}{21}$D.$\sqrt{21}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知O为坐标原点,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,上顶点为P,右顶点为Q,以F1F2为直径的圆O过点P,直线PQ与圆O相交得到的弦长为$\frac{{2\sqrt{3}}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C相交于M,N两点,l与x轴,y轴分别相交于A,B两点,满足:①记MN的中点为E,且A,B两点到直线OE的距离相等;②记△OMN,△OAB的面积分别为S1,S2,若S1=λS2.当S1取得最大值时,求λ的值.

查看答案和解析>>

同步练习册答案