精英家教网 > 高中数学 > 题目详情
10.已知定义域为R上的偶函数f(x)在[0,+∞)上单调递增,且f($\frac{1}{2}$)=0,则不等式f(x-2)>0的解集是{x|x>$\frac{5}{2}$或x<$\frac{3}{2}$}.

分析 根据函数的奇偶性和单调性之间的关系,将不等式进行转化,即可得到不等式的解集.

解答 解:∵偶函数f(x)在[0,+∞)上为增函数,f($\frac{1}{2}$)=0,
∴不等式f(x-2)>0等价为f(|x-2|)>f($\frac{1}{2}$),
即|x-2|>$\frac{1}{2}$,
即x-2>$\frac{1}{2}$或x-2<-$\frac{1}{2}$,
即x>$\frac{5}{2}$或x<$\frac{3}{2}$,
∴不等式f(x-2)>0的解集为{x|x>$\frac{5}{2}$或x<$\frac{3}{2}$}.
故答案为:{x|x>$\frac{5}{2}$或x<$\frac{3}{2}$}.

点评 本题主要考查不等式的解法和应用问题,解题时应利用函数的奇偶性和单调性之间的关系进行等价转化,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1并且,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$的值为(  )
A.1B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=x1g(mx+$\sqrt{{x}^{2}+1}$)为偶函数,则m=(  )
A.-1B.1C.-1或1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(3n+6-5×3n+1)÷(7×3n+2)=$\frac{34}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知M,N为直线y=2(x+3)在第一象限的两个动点,若分别以M,N为圆心的两圆相交,且直线x-y+3=0是两圆的一条公切线,则两圆的另一条公切线1的方程为y=7(x+3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求直线2x-y-1=0被圆x2+y2-2x=0所截得的弦的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果直线kx+y+2=0(k≠0)上存在一点P(x,y),过点P作圆x2+y2-2x-2y+1=0的切线,切点是T,若PT的最小值是2$\sqrt{2}$,则实数k的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,正方体ABCD-A1B1C1D1中,E,F分别为侧面BB1C1C与CC1D1D的中心.
(1)判断A1E与B1F的位置关系;
(2)求A1E与B1F所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设0<x<1,0<y<1,且x≠y,则x+y,2$\sqrt{xy}$,x2+y2,2xy中最大的一个是x+y.

查看答案和解析>>

同步练习册答案