精英家教网 > 高中数学 > 题目详情
在空间直角坐标系中,已知△ABC顶点坐标分别是A(-1,2,3),B(2,-2,3),C(
1
2
5
2
,3).求证:△ABC是直角三角形.
考点:向量的数量积判断向量的共线与垂直
专题:空间向量及应用
分析:求出三角形三个边所在的向量,利用空间向量的数量积为0判断即可.
解答: 证明:△ABC顶点坐标分别是A(-1,2,3),B(2,-2,3),C(
1
2
5
2
,3).
AB
=(3,-4,0),
AC
=(
3
2
1
2
,0),
BC
=(-
3
2
9
2
,0)

AC
BC
=-
9
4
+
9
4
+0
=0.
可得
AC
BC

∴△ABC是直角三角形.
点评:本题考查空间向量的数量积的应用,向量的垂直,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2
x
2
+sinx,求f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班共有60名学生,现领到10张听取学术报告的入场券,先用抽签法和随机数表法把10张入场券分发下去,试写出过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点焦点F作倾斜角为α的直线,交抛物线于A(x1,y1),B(x2,y2)两点,
(1)若α=45°,求线段AB的中点C到抛物线准线的距离;
(2)求证:y1y2=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x-y=0与抛物线x2=2py交于A、B两点,若点P(2,2)为AB中点,求抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

从坐标原点O作曲线y=lnx的切线OP(P为切点),再过切点P引切线的垂线L,L与y轴的交点为Q.
(Ⅰ)求点P及点Q的坐标;
(Ⅱ)证明:点P是曲线y=lnx上距离点Q最近的点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|+|x-1|,a∈R.
(1)当a=3时,解不等式f(x)≤4;
(2)当x∈(-2,1)时,f(x)>|2x-a-1|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+2ln(ax+1),其中实常a∈(1,6).
(Ⅰ)当a=2时,比较f(x)与6x2+6x的大小;
(Ⅱ)已知函数f(x)的图象与直线y=6x相切,证明x∈(1,3)时,(x+3)f(
x
-1
2
)<6x-6.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程x log3xloga3=
x2
a
,x=
 

查看答案和解析>>

同步练习册答案