精英家教网 > 高中数学 > 题目详情
2.已知A=$(\begin{array}{l}{0}&{1}&{0}\\{0}&{0}&{1}\\{1}&{0}&{0}\end{array})$.
(1)求A2,A3,A2014
(2)若n阶方阵B=$[\begin{array}{l}{0}&{1}&{0}&{0}&{…}&{0}\\{0}&{0}&{1}&{0}&{…}&{0}\\{0}&{0}&{0}&{1}&{…}&{0}\\{…}&{…}&{…}&{…}&{…}&{…}\\{0}&{0}&{0}&{0}&{…}&{1}\\{1}&{0}&{0}&{0}&{…}&{0}\end{array}]$(左下角1的余子式为n-1阶单位矩阵),试求出Bk(k∈N*).
(3)若C=$(\begin{array}{l}{{c}_{0}}&{{c}_{1}}&{{c}_{2}}\\{{c}_{2}}&{{c}_{0}}&{{c}_{1}}\\{{c}_{1}}&{{c}_{2}}&{{c}_{0}}\end{array})$,则称此矩阵为三阶循环矩阵,请你参考(1)的计算过程证明两个三阶循环矩阵的乘积仍为三阶循环矩阵.三阶循环矩阵的乘法是否满足交换律?如果是,请说明理由,如果不是,请举出反例.

分析 (1)利用矩阵乘法公式能求出A2,A3,A2014
(2)用数学归纳法可以证明若k=np+q,p∈N,0≤q<n,Bk=$(\begin{array}{l}{O}&{{I}_{n-q}}\\{{I}_{q}}&{O}\end{array})$.
(3)若C,D为三阶循环矩阵,满足交换律CD=DC.

解答 解:(1)∵A=$(\begin{array}{l}{0}&{1}&{0}\\{0}&{0}&{1}\\{1}&{0}&{0}\end{array})$,
∴A2=$(\begin{array}{l}{0}&{1}&{0}\\{0}&{0}&{1}\\{1}&{0}&{0}\end{array})$$(\begin{array}{l}{0}&{1}&{0}\\{0}&{0}&{1}\\{1}&{0}&{0}\end{array})$=$(\begin{array}{l}{0}&{0}&{1}\\{1}&{0}&{0}\\{0}&{1}&{0}\end{array})$.
A3=$(\begin{array}{l}{0}&{0}&{1}\\{1}&{0}&{0}\\{0}&{1}&{0}\end{array})$$(\begin{array}{l}{0}&{1}&{0}\\{0}&{0}&{1}\\{1}&{0}&{0}\end{array})$=$(\begin{array}{l}{1}&{0}&{0}\\{0}&{1}&{0}\\{0}&{0}&{1}\end{array})$.
∴A4=A,
∵2014=671×3+1,
∴A2014=A=$(\begin{array}{l}{0}&{1}&{0}\\{0}&{0}&{1}\\{1}&{0}&{0}\end{array})$.
(2)用数学归纳法可以证明若k=np+q,p∈N,0≤q<n,
Bk=$(\begin{array}{l}{O}&{{I}_{n-q}}\\{{I}_{q}}&{O}\end{array})$,这里O为零矩阵,Iq,In-q为q,n-q阶单位矩阵.
(3)若C,D为三阶循环矩阵,
$C={c}_{0}I+{c}_{1}A+{c}_{2}{A}^{2}$,
D=${d}_{0}I+{d}_{1}A+{d}_{2}{A}^{2}$,
满足交换律CD=DC=(c0d0+c1d2+c2d1)I+(c0d1+c1d0+c2d2)A+(c0d2+c1d1+c2d0)A2

点评 本题考查矩阵的运算及应用,是中档题,解题时要认真审题,注意矩阵乘法运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.二项式($\sqrt{3}$x+$\root{3}{2}$)n(n∈N*)展开式中只有一项的系数为有理数,则n可能取值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sin(ωx+φ)(-π<φ<0,ω>0)的图象关于直线$x=\frac{π}{6}$对称,且两相邻对称中心之间的距离为$\frac{π}{2}$.
(1)求函数y=f(x)的单调递增区间;
(2)若关于x的方程f(x)+log2k=0在区间$[0,\frac{π}{2}]$上总有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数$f(x)=lnx+\frac{1}{x}$,则函数y=f(x)的单调递增区间是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在等差数列{an}中,首项a1=1,数列{bn}满足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$\frac{1}{64}$.
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.△ABC的内角A,B,C及所对的边分别为a,b,c,已知,c=2.
(1)若cos2A-cos2B=$\sqrt{3}$sinAcosA-$\sqrt{3}$sinBcosB且a≠b,求角C的大小及a+b的取值范围;
(2)若$\overrightarrow{CA}$•$\overrightarrow{CB}$=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从5名男同学,4名女同学中任选5人参加一次夏令营,其中男同学,女同学均不少于2人的概率是(  )
A.$\frac{13}{63}$B.$\frac{50}{63}$C.$\frac{43}{63}$D.$\frac{11}{63}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若函数f(x)=2sin($\frac{π}{3}$-2x)+1.
(1)求f(x)的单调递增区间;
(2)若方程f(x)+b=0在[$\frac{π}{2}$,π]上有解,求b的取值范围;
(3)将y=f(x)的图象向左平移$\frac{π}{6}$个单位后,再向下平移1个单位得到函数y=g(x)的图象.
①若y=g(ωx)的图象在(-2π,0)上单调递增,求ω的取值范围;
②若方程g(ωx)=2在(0,2π)上至少存在三个根,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设集合A={x|a-2≤x≤2a+3,x∈R},B={x|x2-6x+5≤0}.
(1)若A∩B=B,求实数a的取值范围;
(2)若A∩∁UB=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案