精英家教网 > 高中数学 > 题目详情

【题目】已知函数 在点 处的切线方程是 .

(1)求 的值及函数 的最大值;

(2)若实数 满足

1)证明:

2)若 ,证明: .

【答案】(1)时,.(2)(i)见解析;(ii)见解析.

【解析】分析:(求出,由可得确定函数的解析式分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;)(结合),可得,即.

又因为,所以,故;(

可得利用导数研究函数的单调性,可得从而得进而可得结果.

详解(Ⅰ)

由题意有,解得

所以为增函数,在为减函数

故有当时,

Ⅱ)证明:

(ⅰ)

,所以,即.

又因为,所以,故.

(ⅱ)法一:

由(1)知

上单调递增

法二:

构造函数

因为,所以

即当时,,所以为增函数

所以,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设动点在圆上,动线段的中点的轨迹为与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知,若直线于点,点是直线上的一动点,是线段的中点,且,点的轨迹为曲线

(1)求曲线的方程;

(2)过点作直线于点,交轴于点,过作直线于点.试判断是否为定值?若是,求出其定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知圆的圆心为,半径为.以极点为原点,极轴方向为轴正半轴方向,利用相同单位长度建立平面直角坐标系,直线的参数方程为为参数,).

(Ⅰ)写出圆的极坐标方程和直线的普通方程;

(Ⅱ)若直线与圆交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个半圆形湖面景点的平面示意图.已知为直径,且km,为圆心,为圆周上靠近的一点,为圆周上靠近的一点,且.现在准备从经过建造一条观光路线,其中是圆弧是线段.,观光路线总长为.

1)求关于的函数解析式,并指出该函数的定义域;

2)求观光路线总长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

原命题为真,它的否命题为假;

原命题为真,它的逆命题不一定为真;

一个命题的逆命题为真,它的否命题一定为真;

一个命题的逆否命题为真,它的否命题一定为真;

⑤“,则的解集为的逆命题.

其中真命题是___________.把你认为正确命题的序号都填在横线上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

合计

(1)用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中选人,求恰好有名女性的概率;

(3)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?

下面的临界值表供参考:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式的解集是,

(1)求a的值;

(2)求不等式的解集.

查看答案和解析>>

同步练习册答案