精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},则方程f(x)﹣lgx=0的解的个数是

【答案】8
【解析】解:∵在区间[0,1)上,f(x)=
第一段函数上的点的横纵坐标均为有理数,
又f(x)是定义在R上且周期为1的函数,
∴在区间[1,2)上,f(x)= ,此时f(x)的图象与y=lgx有且只有一个交点;
同理:
区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;
区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;
区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;
区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;
区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;
区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;
区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;
在区间[9,+∞)上,f(x)的图象与y=lgx无交点;
故f(x)的图象与y=lgx有8个交点;
即方程f(x)﹣lgx=0的解的个数是8,
所以答案是:8

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015春西城区期末)执行如图所示的程序框图,输出的S值为(  )

A.2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线x2=y,点A(﹣ ),B( ),抛物线上的点P(x,y)(﹣ <x< ),过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求|PA||PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=excosx﹣x.(13分)
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣2x+ex ,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20131月,北京经历了59年来雾霾天气最多的一个月.据气象局统计,北京市201311日至130日这30天里有26天出现雾霾天气,《环境空气质量指数(AQI)技术规定(试行)》如表1:

1 空气质量指数AQI分组表

AQI指数M

0~50

51~100

101~150

151~200

201~300

>300

级别

状况

轻度污染

中度污染

重度污染

严重污染

2是某气象观测点记录的连续4天里AQI指数M与当天的空气水平可见度y(km)的情况,表3是某气象观测点记录的北京市201311日至130日的AQI指数频数分布表.

2 AQI指数M与当天的空气水平可见度y(km)的情况

AQI指数M

900

700

300

100

空气水平可见度y(km)

0.5

3.5

6.5

9.5

3 北京市201311日至130AQI指数频数分布表

AQI指数M

[0,200)

[200,400)

[400,600)

[600,800)

[800,1000]

频数

3

6

12

6

3

(1)设x,根据表2的数据,求出y关于x的线性回归方程.

(参考公式:.)

(2)小王在北京开了一家洗车店,经小王统计:当AQI指数低于200时,洗车店平均每天亏损约2000元;当AQI指数在200400时,洗车店平均每天收入约4000元;当AQI指数不低于400时,洗车店平均每天收入约7000元.

①估计小王的洗车店在20131月份平均每天的收入;

②从AQI指数在[0,200)[800,1000]内的这6天中抽取2天,求这2天的收入之和不低于5000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)
(Ⅰ)求b关于a的函数关系式,并写出定义域;
(Ⅱ)证明:b2>3a;
(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣ ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设O为坐标原点,动点M在椭圆C: +y2=1上,过M做x轴的垂线,垂足为N,点P满足 =
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点Q在直线x=﹣3上,且 =1.证明:过点P且垂直于OQ的直线l过C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.

求:(1)求圆的方程;

2)设直线与圆相交于两点,求实数的取值范围;

3)在(2)的条件下,是否存在实数,使得过点的直线垂直平分弦

若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案