精英家教网 > 高中数学 > 题目详情
17.点P从点O出发,按逆时针方向沿周长为l的正方形运动一周,记O,P两点连线的距离y与点P走过的路程x为函数f(x),则y=f(x)的图象大致是(  )
A.B.C.D.

分析 判断函数的图象具有对称性,所以只需求解P到对角线时的函数的解析式,判断即可.

解答 解:O,P两点连线的距离y与点P走过的路程x为函数f(x),当p到达对角线的顶点前,
y=f(x)=$\left\{\begin{array}{l}{x,0≤x≤1}\\{\sqrt{{x}^{2}-2x+2},1<x≤2}\end{array}\right.$,
可知0≤x≤2时,函数的图象只有C满足题意.
函数的图象具有对称性,C满足题意.
故选:C.

点评 本题考查函数的解析式的求法,函数的图象的判断,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.双曲线$\frac{x^2}{a^2}-\frac{y^2}{7}=1$(a>0)的右焦点为圆(x-4)2+y2=1的圆心,则此双曲线的离心率为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知m,n是两条不同的直线,α,β是两个不同的平面(  )
A.若m∥α,m∥β,则α∥βB.若m⊥α,m∥β,则α∥βC.若m⊥α,n∥α,则m∥nD.若m⊥α,n⊥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0}),{F_1}$为左焦点,A为右顶点,B1,B2分别为上、下顶点,若F1,A,B1,B2四点在同一圆上,则此椭圆的离心率为(  )
A.$\frac{{\sqrt{3}-1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a=3e,b=πe,c=π3,其中e=2.71828…为自然对数的底数,则a,b,c的大小关系是(  )
A.a>c>bB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的定义域为[0,2],则函数$g(x)=f({2x})+\sqrt{8-{2^x}}$的定义域为(  )
A.[0,1]B.[0,2]C.[1,2]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$Ω:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,过点$Q({\frac{{\sqrt{2}}}{2},1})$作圆x2+y2=1的切线,切点分别为S,T.直线ST恰好经过Ω的右顶点和上顶点.
(1)求椭圆Ω的方程;
(2)如图,过椭圆Ω的右焦点F作两条互相垂直的弦AB,CD.
①设AB,CD的中点分别为M,N,证明:直线MN必过定点,并求此定点坐标;
②若直线AB,CD的斜率均存在时,求由A,C,B,D四点构成的四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线与椭圆$\frac{x^2}{16}+\frac{y^2}{3}=1$有相同的焦点,且其中一条渐近线为$y=\frac{3}{2}x$,则该双曲线的标准方程是$\frac{x^2}{4}-\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆C:x2+y2=4上所有的点满足约束条件$\left\{\begin{array}{l}{x+y+4≥0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,当m取最小值时,可行域(不等式组所围成的平面区域)的面积为(  )
A.48B.54C.24$\sqrt{2}$D.36$\sqrt{3}$

查看答案和解析>>

同步练习册答案