精英家教网 > 高中数学 > 题目详情

【题目】如图所示,某村积极开展“美丽乡村生态家园”建设,现拟在边长为1千米的正方形地块ABCD上划出一片三角形地块CMN建设美丽乡村生态公园,给村民休闲健身提供去处.点M,N分别在边AB,AD上. (Ⅰ)当点M,N分别是边AB,AD的中点时,求∠MCN的余弦值;
(Ⅱ)由于村建规划及保护生态环境的需要,要求△AMN的周长为2千米,请探究∠MCN是否为定值,若是,求出此定值,若不是,请说明理由.

【答案】解:(Ⅰ)当点M,N分别是边AB,AD的中点时,设∠DCN=∠BCM=θ, CD=BC=1,DN=BM= ,CN=CM= ,sinθ= ,cosθ= ,∠MCN= ﹣2θ,
所以cos∠MCN=cos( ﹣2θ)=sin2θ=2sinθcosθ=
所以∠MCN的余弦值是
(Ⅱ)设∠BCM=α,∠DCN=β,AM=x,AN=y,则BM=1﹣x,DN=1﹣y,
在△CBM中,tanα=1﹣x,在△CDN中,tanβ=1﹣y,
所以:tan(α+β)= = = ,(*)
△AMN的周长为2千米,所以x+y+ =2,化简得xy=2(x+y)﹣2,
代入(*)式,可得tan(α+β)= = = =1,
所以α+β= ,所以∠MCN是定值,且∠MCN=

【解析】(Ⅰ)设∠DCN=∠BCM=θ,由题意利用勾股定理可求CN=CM= ,从而可求sinθ= ,cosθ= ,∠MCN= ﹣2θ,利用诱导公式,二倍角公式即可求∠MCN的余弦值.(Ⅱ)设∠BCM=α,∠DCN=β,AM=x,AN=y,可求BM=1﹣x,DN=1﹣y,tanα=1﹣x,tanβ=1﹣y,可得tan(α+β)= ,由x+y+ =2,化简得xy=2(x+y)﹣2,求得tan(α+β)=1,即可得解∠MCN是定值,且∠MCN=
【考点精析】利用两角和与差的正切公式对题目进行判断即可得到答案,需要熟知两角和与差的正切公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=1,E,F分别是CC1 , BC的中点.
(Ⅰ)求证:B1F⊥平面AEF;
(Ⅱ)求三棱锥E﹣AB1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱台中, 分别是棱长为1与2的正三角形,平面平面,四边形为直角梯形, 中点,

(Ⅰ)是否存在实数使得平面?若存在,求出的值;若不存在,请说明理由;

(Ⅱ)在 (Ⅰ)的条件下,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列四个说法:
①若函数f(x)=asinx+cosx(x∈R)的图象关于直线x= 对称,则a=
②已知向量 =(1,2), =(﹣2,m),若 的夹角为钝角,则m<1;
③当 <α< 时,函数f(x)=sinx﹣logax有三个零点;
④函数f(x)=xsinx在[﹣ ,0]上单调递减,在[0, ]上单调递增.
其中正确的是(填上所有正确说法的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的方程x2+(a2﹣1)x+a﹣2=0的两根满足(x1﹣1)(x2﹣1)<0,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 ).

(Ⅰ)当时,若对任意恒成立,求实数的取值范围;

(Ⅱ)设函数的图象在两点处的切线分别为,若 ,且,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:

序号
(i)

分组
(分数)

组中值
(Gi)

频数
(人数)

频率
(Fi)

1

[60,70)

65

0.10

2

[70,80)

75

20

3

[80,90)

85

0.20

4

[90,100)

95

合计

50

1


(1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,所有棱长均为2,O是底面正方形ABCD中心,E为PC中点,则直线OE与直线PD所成角为(
A.30°
B.60°
C.45°
D.90°

查看答案和解析>>

同步练习册答案