精英家教网 > 高中数学 > 题目详情
已知椭圆的两焦点为F1(0,-1)、F2(0,1),直线y=4是椭圆的一条准线.
(1)求椭圆方程;
(2)设点P在椭圆上,且|PF1|-|PF2|=1,求tan∠F1PF2的值.
分析:(1)先判断椭圆的焦点在x轴上,再根据条件求出a2、b2即可;
(2)利用椭圆的定义,求出|PF1|,|PF2|与|F1F2|,利用余弦定理求得角的余弦值,再利用同角三角函数基本关系式求其正切值.
解答:解:(1)根据题意,椭圆的焦点在y轴上,且c=1,
a2
c
=4,
∴a2=4,b2=a2-c2=3,
∴椭圆的标准方程是
y2
4
+
x2
3
=1;
(2)∵P在椭圆上,∴|PF1|+|PF2|=2a=4,
又|PF1|-|PF2|=1,∴|PF1|=
5
2
,|PF2|=
3
2
,|F1F2|=2,
∴cos∠F1PF2=
|PF1|2+|PF2|2-|F1F2|2
2×|PF2|×|PF1|
=
3
5

∴sin∠F1PF2=
4
5

∴tan∠F1PF2=
sin∠F1PF2
cos∠F1PF2
=
4
3
点评:本题考查椭圆的标准方程及椭圆的性质.
练习册系列答案
相关习题

科目:高中数学 来源:2007-2008学年广东省惠州一中高三(上)数学寒假作业5(理科)(解析版) 题型:选择题

已知椭圆的左焦点为F,A(-a,0),B(0,b)为椭圆的两个顶点,若F到AB的距离等于,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年宁夏银川一中高三(下)第六次月考数学试卷(文科)(解析版) 题型:解答题

已知椭圆的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB过定点().

查看答案和解析>>

科目:高中数学 来源:2011-2012学年高二(上)周考数学试卷(10)(解析版) 题型:选择题

已知椭圆的左焦点为F,A(-a,0),B(0,b)为椭圆的两个顶点,若F到AB的距离等于,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年内蒙古包头市高考数学三模试卷(文科)(解析版) 题型:解答题

已知椭圆的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB过定点().

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第61课时):第八章 圆锥曲线方程-椭圆(解析版) 题型:选择题

已知椭圆的左焦点为F,A(-a,0),B(0,b)为椭圆的两个顶点,若F到AB的距离等于,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案