已知函数
若函数在和上是增函数,在是减函数,求的值;
讨论函数的单调递减区间;
如果存在,使函数,,在处取得最小值,试求的最大值.
;当时,单调减区间为当时,单调减区间为;
.
解析试题分析:通过求导以及极值点的导数计算的值为1;通过导数与函数的单调性关系讨论函数的单调减区间;先写出函数表达式,是一个三次多项式.由,在处取得最小值知在区间上恒成立,从而得 再讨论与时利用二次函数在闭区间的最值问题解得.
试题解析:(Ⅰ) 1分
函数在和上是增函数,在上是减函数,
∴为的两个极值点,∴即 3分
解得: 4分
(Ⅱ),的定义域为,
5分
当时,由解得,的单调减区间为 7分
当时,由解得,的单调减区间为 9分
(Ⅲ),据题意知在区间上恒成立,即① 10分
当时,不等式①成立;
当时,不等式①可化为② 11分
令,由于二次函数的图象是开口向下的抛物线,故它在闭区间上的最小值必在端点处取得,又,所以不等式②恒成立的充要条件是,即 12分
即,因为这个关于的不等式在区间上有解,所以
13分
又,故
科目:高中数学 来源: 题型:解答题
对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(1)当时,讨论函数的单调性:
(2)若函数的图像上存在不同两点,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”。试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数.
(1)若x=时,取得极值,求的值;
(2)若在其定义域内为增函数,求的取值范围;
(3)设,当=-1时,证明在其定义域内恒成立,并证明().
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>-1,且当x∈[,)时,f(x)≤g(x),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
探究函数f(x)=x+,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com