精英家教网 > 高中数学 > 题目详情

【题目】已知过椭圆的左焦点,作斜率为的直线,交椭圆两点.

(1)若原点到直线的距离为,求直线的方程;

(2)设点,直线与椭圆交于另一点,直线与椭圆交于另一点.设的斜率为,则是否为定值?若是,求出该定值;若不是,请说明理由.

【答案】(1);(2).

【解析】

(1)设过点F且斜率为k的直线l的方程为,利用点到直线的距离公式,求得,即可得到所求直线的方程;

(2)设,设直线AM的方程为

联立方程组,根据根据与系数的关系,求得,所以,进而得到,同理得到,化简得到,即可得到结论.

(1)由椭圆,可知

所以可设过点F且斜率为k的直线l的方程为

,设原点O到直线l的距离为d,则

依题意有

所以所求的直线l的方程为.

(2)设

因为点,所以可设直线AM的方程为

联立方程,消去y

整理,得.(*)

所以是方程(*)的两实根,所以,所以

所以.

所以

同理,即.

所以

所以(定值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是一块地皮,其中 是直线段,曲线段是抛物线的一部分,且点是该抛物线的顶点, 所在的直线是该抛物线的对称轴.经测量, km, km, .现要从这块地皮中划一个矩形来建造草坪,其中点在曲线段上,点 在直线段上,点在直线段上,设km,矩形草坪的面积为km2

(1)求,并写出定义域;

(2)当为多少时,矩形草坪的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,平面的中点,是线段上的一点,且.

(1)求证:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,

①求曲线在点处的切线方程;

②求函数在区间上的值域.

(2)对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业的某种产品中抽取件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(Ⅰ)求这件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表,记作);

(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差

(i)若使的产品的质量指标值高于企业制定的合格标准,则合格标准的质量指标值大约为多少?

(ii)若该企业又生产了这种产品件,且每件产品相互独立,则这件产品质量指标值不低于的件数最有可能是多少?

附:参考数据与公式:;若,则①;②;③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的首项a12,前n项和为,且数列{}是以为公差的等差数列·

1)求数列{}的通项公式;

2)设,数列{}的前n项和为

①求证:数列{}为等比数列,

②若存在整数mn(mn1),使得,其中为常数,且2,求的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线和圆,直线与抛物线和圆分别交于四个点(自下而上的顺序为),则的值为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,焦距为,抛物线 的焦点是椭圆的顶点.

(1)求的标准方程;

(2)上不同于的两点 满足,且直线相切,求的面积.

查看答案和解析>>

同步练习册答案