精英家教网 > 高中数学 > 题目详情
已知集合M为点集,记性质P为“对任意(x,y)∈M,k∈(0,1),均有(kx,ky)∈M”.给出下列集合:①{(x,y)|x2≥y},
②{(x,y)|2x2+y2<1},
③{(x,y)|x2+y2+2x+2y=0},
④{(x,y)|x3+y3-x2y=0},
其中具备有性质P的点集的有
②④
②④
.(请写出所有符合的选项)
分析:根据性质P的定义,①③取特殊点进行排除,②④利用定义进行验证即可.
解答:解:①由题意,取点(1,1),则(1,1)∈M,但是(
1
2
1
2
)∉M,∴点集M不具备有性质P的点集;
②∵(x,y)∈{(x,y)丨2x2+y2<1},
∴2x2+y2<1,
2×(
1
2
x)2+(
1
2
y)2
=
1
4
(2x2+y2)<
1
4
<1,
∴点集M具备有性质P的点集;
③取点(0,-2),则(0,-2)∈M,但是
1
2
(0,-1)∉M,∴点集M不具备有性质P的点集;
④∵(x,y)∈{(x,y)丨x3+y3-x2y=0},
∴x3+y3-x2y=0,
∴=(
1
2
x)3+(
1
2
y)3-(
1
2
x)2
1
2
y
=
1
8
(x3+y3-x2y)=0,
∴点集M具备有性质P的点集.
即②④具备有性质P,
故答案为:②④.
点评:本题主要考查与集合有关的新定义题目,难度较大,读懂题意是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合M和N为平面中的两个点集,若存在点A0∈M、B0∈N,使得对任意的点A∈M、B∈N,均有|AB|≥|A0B0|,则称|A0B0|为点集M和N的距离,记为d(M,N)=|A0B0|.已知集合M={(x,y)|x2+(y-2)2≤1},N={(x,y)|
x-y≥1
x+y≤4
y≥1
},则d(M,N)=(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省广州六中高三(上)第三次月考数学试卷(文科)(解析版) 题型:选择题

设集合M和N为平面中的两个点集,若存在点A∈M、B∈N,使得对任意的点A∈M、B∈N,均有|AB|≥|AB|,则称|AB|为点集M和N的距离,记为d(M,N)=|AB|.已知集合M={(x,y)|x2+(y-2)2≤1},N={(x,y)},则d(M,N)=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省佛山市南海区高三(上)入学摸底数学试卷(文科)(解析版) 题型:选择题

设集合M和N为平面中的两个点集,若存在点A∈M、B∈N,使得对任意的点A∈M、B∈N,均有|AB|≥|AB|,则称|AB|为点集M和N的距离,记为d(M,N)=|AB|.已知集合M={(x,y)|x2+(y-2)2≤1},N={(x,y)},则d(M,N)=( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案