精英家教网 > 高中数学 > 题目详情
某单位为了制定节能减排的目标,先调查了用电量y(度)与气温x (0C)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
气温(0C)
18
13
10
-1
用电量(度)
24
34
38
64
 
由表中数据,得线性回归方程则a=            
60

试题分析:先求得,再由线性回归方程必过点得到:.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价(元)
8
8.2
8.4
8.6
8.8
9
销量(件)
90
84
83
80
75
68
 
(1)根据上表可得回归直线方程中的,据此模型预报单价为10元时的销量为多少件?
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入成本)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望及方差.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是(  )
A.抽签法B.随机数表法C.系统抽样法D.分层抽样法

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某中学共有学生2000人,各年级男,女生人数如下表:
一年级二年级三年级
女生373xy
男生377370z
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
(2)已知y≥245,z≥245,求高三年级中女生比男生多的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下结论正确的是        
(1)根据2×2列联表中的数据计算得出2≥6.635, 而P(2≥6.635)≈0.01,则有99% 的把握认为两个分类变量有关系。
(2)在线性回归分析中,相关系数为r,|r|越接近于1,相关程度越大;|r|越小,相关程度越小。
(3)在回归分析中,回归直线方程过点。 
(4)在回归直线中,变量x=200时,变量y的值一定是15。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为了解某校今年准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前个小组的频率之比为,其中第小组的频数为,则报考飞行员的总人数是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某商品销售量(件)与销售价格(元/件)负相关,则其回归方程可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

独立性检验中,假设H0:变量X与变量Y没有关系,则在H0成立的情况下,P(K2≥6.635)≈0.010表示的意义是( )
A.在犯错误的概率不超过0.1%的前提下,认为“变量X与变量Y有关”
B.在犯错误的概率不超过0.1%的前提下,认为“变量X与变量Y无关”
C.有99%以上的把握认为“变量X与变量Y无关”
D.有99%以上的把握认为“变量X与变量Y有关”

查看答案和解析>>

同步练习册答案