精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱ABC﹣A1B1C1中,AB=AC=CC1 , 平面BAC1⊥平面ACC1A1 , ∠ACC1=∠BAC1=60°,AC1∩A1C=O.
(Ⅰ)求证:BO⊥平面AA1C1C;
(Ⅱ)求二面角A﹣BC1﹣B1的余弦值.

【答案】证明:(Ⅰ)依题意,四边形AA1C1C为菱形,且∠AA1C1=60° ∴△AA1C1为正三角形,又∠BAC1=60°,
∴△BAC1为正三角形,又O为AC1中点,
∴BO⊥AC1
∵平面ABC1⊥平面AA1C1C,平面ABC1∩平面AA1C1C=AC1
∵BO平面AA1CC1 , ∴BO⊥平面AA1C1C.
解:(Ⅱ)以O为坐标原点,建空间直角坐标系,如图,
令AB=2,则 ,C1(0,1,0)

设平面BB1C1的一个法向量为

取z=1,得
又面ABC1的一个法向量为

故所求二面角的余弦值为

【解析】(Ⅰ)推导出BO⊥AC1 , 由此利用平面ABC1⊥平面AA1C1C,能证明BO⊥平面AA1C1C.(Ⅱ)以O为坐标原点,建空间直角坐标系,利用向量法能求出二面角的余弦值.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项都是正数,它的前n项和为Sn , 满足2Sn=an2+an , 记bn=(﹣1)n
(1)求数列{an}的通项公式;
(2)求数列{bn}的前2016项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下命题:
①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};
②若函数f(x)是偶函数,则f(|x|)=f(x);
③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;
④若函数f(x)存在反函数f1(x),且f1(x)与f(x)不完全相同,则f(x)与f1(x)图象的公共点必在直线y=x上;
其中真命题的序号是 . (写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥DC,AD=AB=BC=1, ,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=1,点M在线段EF上.
(1)当 为何值时,AM∥平面BDF?证明你的结论;
(2)求二面角B﹣EF﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=4sinxcosx,x∈R的图象,只要把函数y=sin2x﹣ cos2x,x∈R图象上所有的点(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解本校学生的身体素质情况,决定在全校的1000名男生和800名女生中按分层抽样的方法抽取45名学生对他们课余参加体育锻炼时间进行问卷调查,将学生课余参加体育锻炼时间的情况分三类:A类(课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时),B类(课余参加体育锻炼但平均每周参加体育锻炼的时间不超过3小时),C类(课余不参加体育锻炼),调查结果如表:

A类

B类

C类

男生

18

x

3

女生

10

8

y


(1)求出表中x、y的值;
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时与性别有关;

男生

女生

总计

A类

B类和C类

总计


(3)在抽取的样本中,从课余不参加体育锻炼学生中随机选取三人进一步了解情况,求选取三人中男女都有且男生比女生多的概率. 附:K2=

P(K2≥k0

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=sin(2x﹣ )的图象向左平移 个单位后,得到y=g(x)的图象,则下列说法错误的是(
A.y=g(x)的最小正周期为π
B.y=g(x)的图象关于直线x= 对称
C.y=g(x)在[﹣ ]上单调递增
D.y=g(x)的图象关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=e2x﹣x2﹣a.
(1)证明f(x)在(﹣∞,+∞)上为增函数;
(2)当a=1时,解不等式f[f(x)]>x;
(3)若f[f(x)﹣x2﹣2x]>f(x)在(0,+∞)上恒成立,求a的最大整数值.

查看答案和解析>>

同步练习册答案