精英家教网 > 高中数学 > 题目详情

【题目】如图,已知⊙O中,直径AB垂直于弦CD,垂足为MPCD延长线上一点,PE切⊙O于点E,连接BECD于点F,证明:

(1)∠BFM=∠PEF

(2)PF2PD·PC.

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)如图所示,连接OE.利用切线的性质可得:OEPE,于是∠PEF+∠OEF=90°.由已知ABCD,可得∠OBF+∠BFM=90°.由同圆的半径相等可得∠OBF=∠OEB.即可得出结论.

(2)利用(1)可得∠PEF=∠PFE.于是PE=PF.利用“切割线定理”可得PE2=PDPC.即可.

试题解析:

证明:(1)连接OE.

PE切⊙O于点E

OEPE.

∴∠PEF+∠FEO=90°.

又∵ABCD

∴∠B+∠BFM=90°.

又∵∠B=∠FEO

∴∠BFM=∠PEF.

(2)∵∠EFP=∠BFM

∴∠EFP=∠PEF.

PEPF.

又∵PE2PD·PC

PF2PD·PC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{}的前n项和为Sn,公差d0,且 ,公比为q0q1)的等比数列{}中,

1)求数列{}{}的通项公式

2)若数列{}满足,求数列{}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由小到大排列的一组数据x1 , x2 , x3 , x4 , x5 , 其中每个数据都小于﹣1,则样本1,x1 , ﹣x2 , x3 , ﹣x4 , x5的中位数为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,E是AA1的中点,求证: (Ⅰ)A1C∥平面BDE;
(Ⅱ)平面A1AC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,并说明理由;
(2)证明:直线l⊥平面ADD1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;

(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)当 时,求函数f(x)的取值范围;
(2)将f(x)的图象向左平移 个单位得到函数g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋内有4个不同的红球,6个不同的白球,
(1)从中任取4个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔1小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据的茎叶图如图.

(1)根据样品数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对较稳定;
(2)若从乙车间6件样品中随机抽取两件,求所抽取的两件样品的重量之差不超过2克的概率.

查看答案和解析>>

同步练习册答案