精英家教网 > 高中数学 > 题目详情
已知双曲线的两个焦点为F1、F2,P为双曲线上一点,且∠F1PF2=60°,则|PF1|•|PF2|的值为( )
A.2
B.4
C.6
D.8
【答案】分析:先设出|PF1|=m,|PF2|=n,利用双曲线的定义求得|n-m|的值,平方后求得mn和m2+n2的关系,代入△F1PF2的余弦定理中求得mn的值.
解答:解:设|PF1|=m,|PF2|=n,
由双曲线的定义可知|m-n|=2a,
∴m2+n2-2nm=4a2
∴m2+n2=4a2+2nm
由余弦定理可知cos60°===,求得mn=4
则|PF1|•|PF2|的值为4.
故选B.
点评:本题主要考查了双曲线的应用,双曲线的简单性质和双曲线的定义.考查了考生对所学知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为F1(-
5
,0)、F2
5
,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是(  )
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点是椭圆
x2
100
+
y2
64
=1
的两个顶点,双曲线的两条准线经过椭圆的两个焦点,则此双曲线的方程是(  )
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为椭圆
x2
16
+
y2
7
=1
的长轴的端点,其准线过椭圆的焦点,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点为F1(-
5
,0)
F2(
5
,0)
,P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,求该双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两个焦点F1(-
10
,0),F2
10
,0),M是此双曲线上的一点,|
MF1
|-|
MF2
|=6,则双曲线的方程为
x2
9
-y2=1
x2
9
-y2=1

查看答案和解析>>

同步练习册答案