精英家教网 > 高中数学 > 题目详情
(2011•朝阳区二模)已知点P是△ABC的中位线EF上任意一点,且EF∥BC.设△ABC,△PBC,△PCA,△PAB的面积分别为S,S1,S2,S3,记
S1
S
=λ1
S2
S
=λ2
S3
S
=λ3
,定义M(P)=(λ1,λ2,λ3).当λ2•λ3取最大值时,则M(P)等于(  )
分析:根据题意,易得1=λ123,又由S△PBC=
1
2
S△ABC,即λ1=
1
2
,则λ23=
1
2
,由基本不等式可得λ2λ3≤(
λ2+λ3
2
)2=
1
16
λ2=λ3=
1
4
时取等号;即可得答案.
解答:解:根据题意,易得S=S1+S2+S3,即S=λ1S+λ2S+λ3S,进而可得:1=λ123
又由S△PBC=
1
2
S△ABC,即λ1=
1
2

则λ23=
1
2

λ2λ3≤(
λ2+λ3
2
)2=
1
16
λ2=λ3=
1
4
时取等号;
此时M(P)=(λ1,λ2,λ3)=(
1
2
1
4
1
4
);
故选A.
点评:本题考查基本不等式的运用,关键在于发现λ23=
1
2
,进而结合基本不等式来解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知全集U=R,集合A={x|2x>1},B={ x|
1
x-1
>0 }
,则A∩(CUB)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)设函数f(x)=lnx+(x-a)2,a∈R.
(Ⅰ)若a=0,求函数f(x)在[1,e]上的最小值;
(Ⅱ)若函数f(x)在[
12
,2]
上存在单调递增区间,试求实数a的取值范围;
(Ⅲ)求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)在长方形AA1B1B中,AB=2A1=4,C,C1分别是AB,A1B1的中点(如图).将此长方形沿CC1对折,使平面AA1C1C⊥平面CC1B1B(如图),已知D,E分别是A1B1,CC1的中点.
(Ⅰ)求证:C1D∥平面A1BE;
(Ⅱ)求证:平面A1BE⊥平面AA1B1B;
(Ⅲ)求三棱锥C1-A1BE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知cosα=
3
5
,0<α<π,则tan(α+
π
4
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知函数f(x)=2sinx•sin(
π
2
+x)-2sin2x+1
(x∈R).
(Ⅰ)求函数f(x)的最小正周期及函数f(x)的单调递增区间;
(Ⅱ)若f(
x0
2
)=
2
3
x0∈(-
π
4
π
4
)
,求cos2x0的值.

查看答案和解析>>

同步练习册答案