精英家教网 > 高中数学 > 题目详情
(2012•黄浦区二模)已知三棱锥P-ABC,PA⊥平面ABC,AB⊥AC,AB=AC=4,AP=5.
(1)求二面角P-BC-A的大小(结果用反三角函数值表示).
(2)把△PAB(及其内部)绕PA所在直线旋转一周形成一几何体,求该几何体的体积V.
分析:(1)取BC中点D,连接AD、PD,可得∠PDA为二面角P-BC-A的平面角,在直角△PAD中,利用正切函数可求二面角P-BC-A的大小;
(2)由题设,所得几何体为圆锥,其底面半径为4,高为5,故可求圆锥的体积.
解答:解:(1)取BC中点D,连接AD、PD;

在等腰三角形PBC、ABC中,PD⊥BC,AD⊥BC,故∠PDA为二面角P-BC-A的平面角.       (2分)
在等腰直角△ABC中,由AB=AC=4及AB⊥AC,得AD=2
2

由PA⊥平面ABC,得PA⊥AD.
在直角△PAD中,tan∠PDA=
PA
AD
=
5
2
4
.                            (6分)
故二面角P-BC-A的大小为arctan
5
2
4
.                           (8分)
(2)由题设,所得几何体为圆锥,其底面半径为4,高为5.
∴该圆锥的体积V=
1
3
×5×π×42
=
80π
3
.                              (12分)
点评:本题考查面面角,考查几何体体积的计算,正确确定面面角是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知α、β∈(0,
π
2
),若cos(α+β)=
5
13
,sin(α-β)=-
4
5
,则cos2α=
63
65
63
65

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知函数f(x)=|x2-2ax+a|(x∈R),给出下列四个命题:
①当且仅当a=0时,f(x)是偶函数;
②函数f(x)一定存在零点;
③函数在区间(-∞,a]上单调递减;
④当0<a<1时,函数f(x)的最小值为a-a2
那么所有真命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)函数f(x)=log
1
2
(2x+1)
的定义域为
(-
1
2
,+∞)
(-
1
2
,+∞)

查看答案和解析>>

同步练习册答案