精英家教网 > 高中数学 > 题目详情
1.已知点P(cosθ,tanθ)在第二象限,则角θ的终边在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由题意利用三角函数在各个象限中的符号,判断角θ的终边所在的象限.

解答 解:∵已知点P(cosθ,tanθ)在第二象限,∴cosθ<0,tanθ>0,
则角θ的终边在第三象限,
故选:C.

点评 本题主要考查任意角的三角函数的定义,三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos$(\frac{π}{3}x+\frac{π}{3})-2co{s}^{2}\frac{π}{6}x$
(1)求函数f(x)的周期T;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数y=2x2-ax+3有一个零点为$\frac{3}{2}$,则f(1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在矩形 OABC中,$\overrightarrow{{A}{B}}=3\overrightarrow{{A}{E}}$,$\overrightarrow{{B}C}=3\overrightarrow{FC}$,若$\overrightarrow{{O}{B}}=λ\overrightarrow{{O}{E}}+μ\overrightarrow{{O}F}$(λ,μ∈R),则λμ等于(  )
A.$\frac{9}{4}$B.$\frac{9}{16}$C.$\frac{4}{9}$D.$\frac{16}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.f(x)=logax,g(x)=2loga(2x+t-2),(a>0,a≠1,t∈R).
(1)当$t=4,x∈[{\frac{1}{4},2}]$时,F(x)=g(x)-f(x)的最小值是-2,求a的值;
(2)当$0<a<1,x∈[{\frac{1}{4},2}]$时,有f(x)≥g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x-2|,方程a[f(x)]2-f(x)+1=0有四个不同的实数解,则实数a的取值范围是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线m,l和平面α,β,且l⊥α,m?β,给出下列四个命题:
①α∥β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β
其中真命题的有①③(请填写全部正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知下列命题:①若$\overrightarrow{a}•\overrightarrow{b}$<0,则$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为钝角;②a,b∈C,则“ab∈R”是“a,b互为共轭复数”的必要非充分条件;③一个骰子连续投2次,点数和为4的概率为$\frac{1}{9}$;④若n为正奇数,则6n+${C}_{n}^{1}{6}^{n-1}$+${C}_{n}^{2}{6}^{n-2}$+…+${C}_{n}^{n-1}6-1$被8除的余数是5,其中正确的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\frac{2}{3}$x3-2ax2-3x(a∈R),若曲线y=f(x)在点P(1,f(1))处的切线与直线x+3y+1=0垂直,则实数a的值为(  )
A.-1B.1C.-$\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案