精英家教网 > 高中数学 > 题目详情
证明:函数f(x)=
ex-e-x
2
为增函数.
考点:函数单调性的判断与证明
专题:函数的性质及应用
分析:利用指数函数的性质来进行证明,首先根据函数的性质ex在x∈R为单调递增函数,e-x在x∈R为单调递减函数,则:ex-e-x为单调递增函数,从而得到结论.
解答: 证明:函数f(x)=
ex-e-x
2
的定义域为:x∈R
根据函数的性质ex在x∈R为单调递增函数,e-x在x∈R为单调递减函数
则:ex-e-x为单调递增函数,
从而得到:f(x)=
ex-e-x
2
在在x∈R为单调递增函数
点评:本题考查的知识点:函数单调性的证明利用指数函数的性质来证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线y=e2x-x在点(0,1)处的切线方程为(  )
A、y=
1
2
x+1
B、y=1
C、y=2x-1
D、y=x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x+
1
x
,设集合A={x|2≤f(x)≤
5
2
},U=R,则集合∁UA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(x2-2ax-a)在区间(-∞,-3)上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-x-
a
x
,a∈R.
(1)若f(x)在[1,2]上单调递增,求a的取值范围;
(2)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
分组频数频率
50.5~60.540.08
60.5~70.50.16
70.5~80.510
80.5~90.5160.32
90.5~100.5
合计50
(1)请填充频率分布表的空格,并补全频率分布直方图;
(2)若成绩在75.5~85.5分的学生为二等奖,请你估计获得二等奖的人数;
(3)用分层抽样的方法从80分以上(不包括80分)的学生中抽取了7人进行试卷分析,再从这7人中选取2人进行经验汇报,求选出的2人至少有1人在[90.5,100.5]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x),当x=2时函数取最小值-1,且f(1)+f(4)=3.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-kx在区间[1,4]上不单调,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级有男学生105人,女学生126人,教师42人,用分层抽样的方法从中抽取13人进行问卷调查,设其中某项问题的选择,分别为“同意”、“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.
同意不同意合计
教师1  
女学生 4 
男学生 2 
(1)完成此统计表;
(2)估计高三年级学生“同意”的人数;
(3)从被调查的女学生中选取2人进行访谈,设“同意”的人数为ξ,求Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x+1
x+a
在区间(3,+∞)上是减函数,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案