精英家教网 > 高中数学 > 题目详情
如图,椭圆C:的左顶点为A,M是椭圆C上异于点A的任意一点,点P与点A关于点M对称.

(1)若点P的坐标,求m的值;
(2)若椭圆C上存在点M,使得,求m的取值范围.
(1)(2)

试题分析:
(1)根据m的取值范围可以判断椭圆C的焦点,得到点A的坐标,则根据点与点的中点坐标公式可以用点P,A的坐标计算得到点M的坐标,把M点的坐标带入椭圆即可求的m的值.
(2)从题得A,P关于M对称,则可以设出M点的坐标,得到P点的坐标(中点的坐标公式),因为OM与OP垂直,则根据向量的内积为0可以得到关于M点坐标的方程,则把该方程与M点满足的椭圆方程联立消纵坐标即可求出m关于M点横坐标的方程,再利用基本不等式就可以求出m的取值范围(注意取得等号条件的验证与m值本身具有正数的范围)
试题解析:
(1)依题意,是线段的中点,因为
所以点的坐标为.   2分
由点在椭圆上,所以,解得.     4分
(2)设,则,且.①   5分
因为是线段的中点,所以.      7分
因为,所以.②      9分
由①,②消去,整理得.      11分
所以,   13分
当且仅当时,上式等号成立.
所以的取值范围是.     14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为FA为短轴的一个端点,且的面积为1(其中为坐标原点).
(1)求椭圆的方程;
(2)若CD分别是椭圆长轴的左、右端点,动点M满足,连结CM,交椭圆于点,证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DPMQ的交点,若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.
(1)当点在圆上运动时,求点的轨迹方程
(2)已知是曲线上的两点,若曲线上存在点,满足为坐标原点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,其长轴长与短轴长的和等于6.

(1)求椭圆的方程;
(2)如图,设椭圆的上、下顶点分别为是椭圆上异于的任意一点,直线分别交轴于点,若直线与过点的圆相切,切点为.证明:线段的长为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,右焦点为(,0).
(1)求椭圆的方程;  
(2)若过原点作两条互相垂直的射线,与椭圆交于两点,求证:点到直线的距离为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点,已知点的坐标为,点在线段的垂直平分线上,且,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过原点O作两条相互垂直的直线分别与椭圆P:交于A、C与B、D, 则四边形ABCD面积最小值为______________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动点在椭圆上,若点坐标为,,且的最小值是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的方程C:),若椭圆的离心率,则的取值范围是.

查看答案和解析>>

同步练习册答案