精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,为四边形对角线交点,为棱的中点,且平面.

1)证明:平面

2)证明:四边形为矩形.

【答案】1)见解析(2)见解析

【解析】

1)取中点,连结,由题意,证出,且,进而可得,利用线面平行的判定定理即可证出.

2)首先证出,利用线面垂直的性质定理证出,再利用线面垂直的判定定理证出平面,从而可证出,根据,即证.

证明:(1)取中点,连结.

在三棱柱中,四边形为平行四边形,

.

因为为平行四边形对角线的交点,所以中点,

中点,所以,且.

,所以,且.

中点,所以,且

所以为平行四边形,

所以

又因为平面平面

所以平面

2)因为中点,所以

又因为平面平面,所以.

因为平面平面

所以平面.

平面,所以

又由(1)知,所以

在三棱柱中,四边形为平行四边形,

所以四边形为矩形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).

)(i)请根据图示,将2×2列联表补充完整;


优分

非优分

总计

男生




女生




总计



50

ii)据此列联表判断,能否在犯错误概率不超过10%的前提下认为该学科成绩与性别有关

)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率.

附:


0.100

0.050

0.010

0.001


2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春节期间,新型冠状病毒(2019nCoV)疫情牵动每一个中国人的心,危难时刻全国人民众志成城.共克时艰,为疫区助力.我国SQ市共100家商家及个人为缓解湖北省抗疫消毒物资压力,募捐价值百万的物资对口输送湖北省H市.

1)现对100家商家抽取5家,其中2家来自A地,3家来自B地,从选中的这5家中,选出3家进行调研.求选出3家中1家来自A地,2家来自B地的概率.

2)该市一商家考虑增加先进生产技术投入,该商家欲预测先进生产技术投入为49千元的月产增量.现用以往的先进技术投入xi(千元)与月产增量yi(千件)(i123,…,8)的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且:,其中,,根据所给的统计量,求y关于x回归方程,并预测先进生产技术投入为49千元时的月产增量.

附:对于一组数据(u1v1)(u2v2),其回归直线vα+βu的斜率和截距的最小二乘法估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与圆相交于两点,点,且,若,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的极值点;

2)定义:若函数的图像与直线有公共点,我们称函数有不动点.这里取:,若,如果函数存在不动点,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行元旦促销回馈活动,凡购物满1000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为123455个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励元(为三位数的百位上的数字,如三位数为234,则奖励元).

1)求抽奖者在一次抽奖中所得三位数是奇数的概率;

2)求抽奖者在一次抽奖中获奖金额的概率分布与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为支援武汉抗击新冠肺炎疫情,军队抽组1400名医护人员于23日起承担武汉火神山专科医院医疗救治任务.此外,从解放军疾病预防控制中心、军事科学院军事医学研究院抽取15名专家组成联合专家组,指导医院疫情防控工作.该医院开设了重症监护病区(),重症病区(),普通病区()三个病区.现在将甲乙丙丁4名专家分配到这三个病区了解情况,要求每个专家去一个病区,每个病区都有专家,一个病区可以有多个专家.已知甲不能去重症监护病区(),乙不能去重症病区(),则一共有__________种分配方式

查看答案和解析>>

同步练习册答案