精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥中,底面是菱形,交于点底面的中点,.

(1)求证: 平面

(2)求异面直线所成角的余弦值;

(3)求与平面所成角的正弦值.

【答案】1)证明见详解;(2;(3

【解析】

1)连接OF,可得OF为的中位线,OF∥DE,可得证明;

(2)连接C点与AD中点为x轴,CBy轴,CEz轴建立空间直角坐标系,可得的值,可得异面直线所成角的余弦值;

(3)可得平面EBD的一个法向量为,可得与平面所成角的正弦值.

解:(1

如图,连接OF,因为底面是菱形,交于点

可得O点为BD的中点,又的中点,所以OF为的中位线,

可得OF∥DE,又,DE不在平面ACF内,

可得 平面

2)如图连接C点与AD中点位x轴,CBy轴,CEz轴建立空间直角坐标系,

设菱形的边长为2,可得CE=2

可得E(002)O(,,0),A(,1,0),F(0,1,1),

可得:,,设异面直线所成角为

可得

3)可得D (,-1,0),B(0,2,0),E(0,0,2),

可得,,设平面EBD的一个法向量为

可得,可得的值可为,由

可得与平面所成角的正弦值为

=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某部队在一次军演中要先后执行六项不同的任务,要求是:任务必须排在前三项执行,且执行任务之后需立即执行任务,任务相邻,则不同的执行方案共有______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的上顶点为A,左、右焦点分别为,直线的斜率为,点在椭圆E上,其中P是椭圆上一动点,Q点坐标为.

(1)求椭圆E的标准方程;

(2)作直线lx轴垂直,交椭圆于两点(两点均不与P点重合),直线x轴分别交于点.的最小值及取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线经过点,过作倾斜角互补的两条不同直线.

1)求抛物线的方程及准线方程;

2)设直线分别交抛物线两点(均不与重合,如图),记直线的斜率为正数,若以线段为直径的圆与抛物线的准线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若动点满足:.

1)求动点的轨迹的方程;

2)若点分别位于轴与轴的正半轴上,直线与曲线相交于两点,且,请问在曲线上是否存在点,使得四边形为坐标原点)为平行四边形?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,该椭圆与轴正半轴交于点,且是边长为的等边三角形.

1)求椭圆的标准方程;

2)过点任作一直线交椭圆于两点,平面上有一动点,设直线的斜率分别为,且满足,求动点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

讨论的单调性;

,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知M为圆Cx2y24x14y450上任意一点,且点Q(-2,3).

1)求|MQ|的最大值和最小值;

2)若Mmn),求的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为 ,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心力为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,直线 轴交于点,与椭圆交于 两个不同的点,若存在实数,使得,求的取值范围.

查看答案和解析>>

同步练习册答案